Once-Marking and Always-Marking 1-Limited Automata

Giovanni Pighizzini1 Luca Prigioniero2

1Dipartimento di Informatica
Università degli Studi di Milano, Italy

2Department of Computer Science
Loughborough University, UK

AFL 2023 – Eger, Hungary
September 6, 2023
Introduction to Limited Automata
Limited Automata [Hibbard ’67, scan limited automata]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer \(d \geq 1 \), a \(d \)-limited automaton is

- a one-tape Turing machine
- which is allowed to replace the content of each tape cell

 only in the first \(d \) visits

Technical details:

- Input surrounded by two end-markers
- End-markers are never changed
- The head cannot exceed the end-markers
Limited Automata [Hibbard ’67, *scan limited automata*]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a *d-limited automaton* is

- a one-tape Turing machine
- which is allowed to replace the content of each tape cell *only in the first d visits*

Computational power

- For each $d \geq 2$, d-limited automata characterize context-free languages [Hibbard ’67]
- 1-limited automata characterize regular languages [Wagner&Wechsung ’86]
Simulation of 1-Limited Automata by Finite Automata

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson ’59]:

- First visit to a cell: direct simulation
- Further visits: \textit{transition tables}

\[
\begin{array}{c|c}
\tau_x & \subseteq Q \times Q \\
(p, q) \in \tau_x & \text{iff } x \\
\end{array}
\]

- Finite control of the simulating automaton:
 - \textit{transition table} \(\tau_x \)
 - \textit{set} of possible current states

Simulation of 2NFAs:
\(\tau_x \) depends only on \(x \)
\Rightarrow The resulting automaton is \textit{deterministic}!

Simulation of 1-LAs:
\(\tau_x \) depends on the choices made while reading \(x \)
\Rightarrow The resulting automaton is \textit{nondeterministic}!
Double role of nondeterminism in 1-LAs

On a tape cell:

First visit: To replace the content by a nondeterministically chosen symbol γ

Next visits: To select a transition the set of available transitions depends on γ!
Size Costs of Simulations

1-LA

$\geq \exp$ $\geq \exp$

double exp

1NFA/2NFA

exp

2DFA

exp

1DFA

exp

det-1-LA

exp

exp
Size Costs of Simulations

1-LAs \rightarrow 1DFAs: double exponential gap

Problem: How much can we restrict the moves of 1-LAs in order to keep this gap double exponential?

- Once-Marking 1-Limited Automata
- Always-Marking 1-Limited Automata
Keeping a Double Exponential Gap
Once-Marking 1-Limited Automata
The Language K_n ($n > 0$)

$$K_n = \{x_1 x_2 \cdots x_k x \mid k > 0, x_1, \ldots, x_k, x \in \{a, b\}^n,$$

$$\text{and } \exists j \in \{1, \ldots, k\} \text{ s.t. } x_j = x\}$$

Example ($n = 3$):

$$a \ a \ b | a \ b \ a | b \ b \ a | a \ b \ a | b \ a \ a | b \ b \ b | b \ b \ a$$
A Nondeterministic 1-Limited Automaton for K_n

\[\▷ a \ a \ b \ a \ b \ a \ b \ b \ b \ a \ a \ b \ a \ b \ a \ a \ b \ b \ b \ b \ a \ ◁ \ (n = 3) \]

1. Scan all the tape from left to right:
 - check if the input length is a multiple of n
 - mark the rightmost cell of one nondeterministically chosen block

2. Compare symbol by symbol the last block and the one ending with the marked cell

3. Accept if the two blocks are equal

Complexity:

\[\Rightarrow O(n) \text{ states} \]

\[\Rightarrow 1\text{-LA of size } O(n) \]

Fixed working alphabet

Rewritings: to accept K_n it is enough to mark one tape cell during the first visit!
Recognizing K_n with Finite Automata

$$K_n = \{ x_1 x_2 \cdots x_k x \mid k > 0, \; x_1, \ldots, x_k, x \in \{a, b\}^n, \text{ and } \exists j \in \{1, \ldots, k\} \text{ s.t. } x_j = x \}$$

Finite automata

To recognize K_n each 1DFA requires a number of states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs \rightarrow 1DFAs

The gap remains double exponential even for 1-LAs that are allowed to rewrite only one cell!

\Rightarrow Once-Marking 1-Limited Automata
Definition

A 1-limited automaton is said to be once marking (OM-1-LA) if
- in each computation there is a unique tape cell whose input symbol σ is replaced with its marked version $\breve{\sigma}$
- all the remaining cells are never changed

- Computational power: Regular languages
- Costs of the conversion to 1DFAs: Double exponential
Conversions from Once-Marking 1-Limited Automata

Costs from *nondeterministic* OM-1-LAs:
Conversions from Once-Marking 1-Limited Automata

Costs from *nondeterministic* OM-1-LAs:

Costs from *deterministic* OM-1-LAs?
Conversions of deterministic OM-1-LAs

Theorem

For each n-state deterministic OM-1-LA \mathcal{A} there exists an equivalent 2DFA \mathcal{A}' with $O(n^3)$ states.

Proof idea

- At the beginning \mathcal{A}' makes the same moves as \mathcal{A}
- When the marking move is reached:
 - \mathcal{A}' simulates it without marking
 \mathcal{A}' saves the state q and the symbol σ in its control
- Remaining moves:
 - if symbol on the tape $\neq \sigma$: simulated as in \mathcal{A}
 - otherwise \mathcal{A}' calls a verification procedure to decide if the symbol is the marked one
 - According to the result \mathcal{A}' choose the move
- Verification procedure:
 - “backward search” in the computation tree [Sipser ’80]
Size Costs of the Conversion From OM-1-LAs
Reducing the Gap to a Single Exponential
Always-Marking 1-Limited Automata
Reducing the Gap: First Attempts

Double role of nondeterminism in 1-LAs

On a tape cell:

First visit: To replace the content by a nondeterministically chosen symbol γ

Next visits: To select a transition

the set of available transitions depends on γ!

Two “naif” restrictions of 1-LAs:

1. Deterministic choice for rewritings
 Nondeterministic choice for next state and head movement

2. Nondeterministic choice for rewritings
 Deterministic choice for next state and head movement

For both restrictions, in the worst case the size gap to 1DFAs remains double exponential!
Simulation of 1-Limited Automata by Finite Automata

- First visit to a cell: direct simulation
- Further visits: *transition tables*

\[\tau_x \subseteq Q \times Q \]

\[(p, q) \in \tau_x \text{ iff } \]

- Finite control of the simulating automaton:
 - *transition table* \(\tau_x \)
 - *set* of possible current states

\[2^{n^2+n} \text{ states} \]
\[2^{n^2} \text{ possible tables} \]
\[2^n \text{ possible sets} \]

The double exponential gap is due to the fact that different computations can produce different \(\tau_x \) for the same prefix \(x \)

Consider restrictions that avoid that!

\[\Rightarrow \text{Always-Marking 1-Limited Automata} \]
A 1-LA is said to be *always marking* if each time the head visits a tape cell for the first time, the input symbol σ in it is replaced with its marked version $\bullet \sigma$.

- **Computational power:** Regular languages
- **Costs of the conversion to 1DFAs:** *Single* exponential
The Language J_n ($n > 0$)

$$J_n = \{ x_1 x_2 \cdots x_k \mid k > 0, x_1, \ldots, x_k, x \in \{a, b\}^n, \text{ and } \exists j \in \{1, \ldots, k\} \text{ s.t. } x_j = x \}$$

Then:

- $J_n = (K_n)^R$

- Each 2NFA accepting J_n has a number of states at least exponential in n
 - 2NFAs \rightarrow 1DFAs costs exponential
 - K_n needs at least 2^{2^n} states to be accepted by 1DFAs
 - J_n and K_n have 2NFAs of the same size
Recognizing J_n with AM-1-LAs

$\triangleright \overset{\text{•••••••••••••}}{\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet}\overset{\text{•••••••••••••}}{\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet\bullet}\langle \quad (n = 3)$

- Visit and mark the first n tape cells
 - Then inspect the following blocks as follows:
 - When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block
 - otherwise if the current block is not finished then continue inspection
 - otherwise accepts if the length of the remaining part of the input is a multiple of n

Implementation with $O(n)$ states

Only deterministic transitions!
Simulations of AM-1-LAs

Summing up:
- det-1-LAs \rightarrow 2NFAs costs exponential
- J_n is accepted by a det-AM-1-LA with $O(n)$ states
- Each 2NFA accepting J_n has a number of states at least exponential in n

Then:

det-AM-1-LAs \rightarrow 2NFAs

Exponential cost!

\Rightarrow Even the costs of the remaining simulations are exponential
Conclusion: Once-Marking 1-Limited Automata

“One drop” of nondeterminism allows to reach the same succinctness as 1-LAs (language K_n)

Problem
Prove that this is not always the case, i.e., there are languages for which 1-LAs are more succinct than OM-1-LAs (e.g., variants of K_n)
Conclusion: Once-Marking 1-Limited Automata

The capability of once marking does not look really interesting without nondeterminism.

Problem: How much it costs the elimination of nondeterminism from OM-1-LAs?
Conclusion: Always-Marking 1-Limited Automata

All the gaps are exponential

Further restriction: Forgetting 1-limited automata (NCMA 2023)
Further possible investigation lines

▶ Unary case

▶ Connections with the Sakoda and Sisper question (costs of $2\text{NFA} \rightarrow 2\text{DFA}$ and $1\text{NFA} \rightarrow 2\text{DFA}$)

▶ ...

Thank you for your attention!