Once-Marking and Always-Marking 1-Limited Automata

Giovanni Pighizzini¹ Luca Prigioniero²

¹Dipartimento di Informatica Università degli Studi di Milano, Italy

²Department of Computer Science Loughborough University, UK

> AFL 2023 – Eger, Hungary September 6, 2023

Introduction to Limited Automata

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

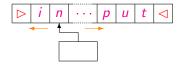
- ► a one-tape Turing machine
- which is allowed to replace the content of each tape cell only in the first d visits

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

- ▶ a one-tape Turing machine
- which is allowed to replace the content of each tape cell only in the first d visits



Technical details:

- Input surrounded by two end-markers
- End-markers are never changed
- The head cannot exceed the end-markers

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

- ▶ a one-tape Turing machine
- which is allowed to replace the content of each tape cell only in the first d visits

Computational power

For each $d \ge 2$, d-limited automata characterize context-free languages

[Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

- ▶ a one-tape Turing machine
- which is allowed to replace the content of each tape cell only in the first d visits

Computational power

- For each $d \ge 2$, d-limited automata characterize context-free languages [Hibbard '67]
- ► 1-limited automata characterize regular languages [Wagner&Wechsung '86]

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson '59]:

- First visit to a cell: direct simulation
- ► Further visits: *transition tables*

- Finite control of the simulating automaton:
 - transition table τ_{\star}
 - set of possible current states

 2^{n^2+n} states n^2 possible tables 2^n possible sets

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson '59]:

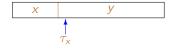
- First visit to a cell: direct simulation
- ► Further visits: *transition tables*

- Finite control of the simulating automaton:
 - transition table $au_{ imes}$
 - set of possible current states

 2^{n^2+n} states possible tables 2^n possible sets

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson '59]:

- First visit to a cell: direct simulation
- ► Further visits: *transition tables*

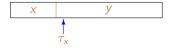


- Finite control of the simulating automaton:
 - transition table au_{\star}
 - set of possible current states

- 2^{n^2+n} states
- possible tables
 - 2ⁿ possible sets

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson '59]:

- First visit to a cell: direct simulation
- Further visits: transition tables

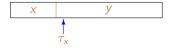


- Finite control of the simulating automaton:
 - transition table τ_{x}
 - set of possible current states

possible tables 2^n possible sets

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson '59]:

- First visit to a cell: direct simulation
- ► Further visits: transition tables



$$\tau_{\mathsf{x}}\subseteq \mathsf{Q}\times\mathsf{Q}$$

$$(p,q) \in \tau_{\mathsf{x}} \text{ iff } \boxed{\mathsf{x}}$$

- Finite control of the simulating automaton:
- 2" ⁺" sta

- transition table au_{x}

 2^{n^2} possible tables 2^n possible sets

- set of possible current states

Simulation of 2NFAs:

- τ_{x} depends only on x
- ⇒ The resulting automaton is deterministic!

Derived from the simulation of 2NFAs by 1DFAs [Shepherdson '59]:

- First visit to a cell: direct simulation
- ► Further visits: transition tables

- Finite control of the simulating automaton:
- 2^{n^2+n} states

- transition table au_{x}

 2^{n^2} possible tables 2^n possible sets

- set of possible current states

Simulation of 2NFAs:

- τ_{x} depends only on x
- ⇒ The resulting automaton is deterministic!

Simulation of 1-LAs:

- au_{x} depends on the choices made while reading x
- ⇒ The resulting automaton is nondeterministic!

1-LAs versus Finite Automata [P.&Pisoni '14]

- ► 1-LAs \rightarrow 1NFAs exponential
- ► 1-LAs \rightarrow 1DFAs double exponentia

 $\begin{array}{c} \bullet \quad \mathsf{det}\text{-}1\mathsf{-}\mathsf{LA}s \to \mathsf{1DFA}s \\ \mathsf{exponential} \end{array}$

1-LAs versus Finite Automata [P.&Pisoni '14]

- ► 1-LAs \rightarrow 1NFAs exponential
- ► 1-LAs → 1DFAs double exponentia

1-LAs versus Finite Automata [P.&Pisoni '14]

- ► 1-LAs \rightarrow 1NFAs exponential
- ► 1-LAs \rightarrow 1DFAs double exponential

 $\begin{array}{c} \bullet \quad \mathsf{det}\text{-}1\text{-}\mathsf{LA}s \to \mathsf{1DFA}s \\ \mathsf{exponential} \end{array}$

1-LAs versus Finite Automata [P.&Pisoni '14]

- 1-LAs → 1NFAs exponential
- 1-LAs → 1DFAs double exponential

 $\begin{array}{c} \bullet \quad \mathsf{det}\text{-}1\text{-}\mathsf{LA}s \to \mathsf{1DFA}s \\ \mathsf{exponential} \end{array}$

All these bounds are tight!

1-LAs versus Finite Automata [P.&Pisoni '14]

► 1-LAs \rightarrow 1NFAs exponential

 $\begin{array}{c} \bullet \quad \mathsf{det}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{1DFAs} \\ \mathsf{exponential} \end{array}$

1-LAs → 1DFAs double exponential

All these bounds are tight!

Double role of nondeterminism in 1-LAs

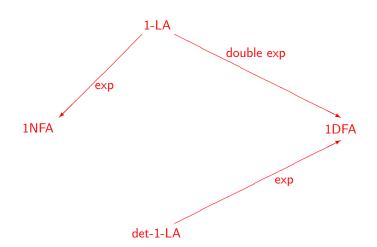
On a tape cell:

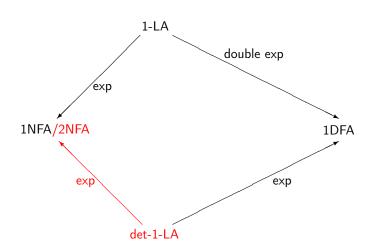
First visit: To replace the content

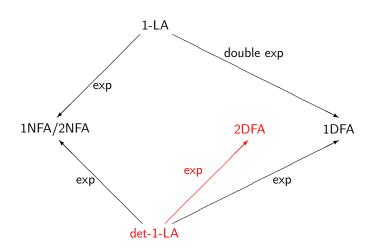
by a nondeterministically chosen symbol γ

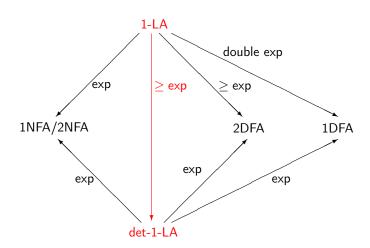
Next visits: To select a transition

the set of available transitions depends on $\gamma!$









 $1\text{-LAs} \rightarrow 1\text{DFAs}$: double exponential gap

1-LAs o 1DFAs: double exponential gap

Problem: How much can we restrict the moves of 1-LAs in order to keep this gap double exponential?

1-LAs \rightarrow 1DFAs: double exponential gap

Problem: How much can we restrict the moves of 1-LAs in order to keep this gap double exponential?

Once-Marking
1-Limited Automata

1-LAs \rightarrow 1DFAs: double exponential gap

Problem: How much can we restrict the moves of 1-LAs in order to keep this gap double exponential?

Once-Marking
1-Limited Automata

Always-Marking 1-Limited Automata

Keeping a Double Exponential Gap Once-Marking 1-Limited Automata

The Language K_n (n > 0)

$$K_n = \{x_1 x_2 \cdots x_k x \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

The Language K_n (n > 0)

$$K_n = \{x_1 x_2 \cdots x_k x \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Example
$$(n = 3)$$
:

aabababbaabaabbbba

The Language K_n (n > 0)

$$K_n = \{x_1 \, x_2 \cdots x_k \, x \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$
 and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Example
$$(n = 3)$$
:

a a b|a b a|b b a|a b a|b a a|b b b|b b a

- 1. Scan all the tape from left to right:
 - lacktriangle check if the input length is a multiple of n
 - mark the rightmost cell of one nondeterministically chosen block
- 2. Compare symbol by symbol the last block and the one ending with the marked cell
- 3. Accept if the two blocks are equal

$$\triangleright$$
 a a b a b a b b $\stackrel{\bullet}{a}$ a b a b a a b b b b b a \triangleleft $(n=3)$

- 1. Scan all the tape from left to right:
 - lacktriangle check if the input length is a multiple of n
 - mark the rightmost cell of one nondeterministically chosen block
- Compare symbol by symbol the last block and the one ending with the marked cell
- 3. Accept if the two blocks are equal

$$\triangleright$$
 a a b a b a b a a b a b a a b b b b a \triangleleft $(n=3)$

- 1. Scan all the tape from left to right:
 - $lue{}$ check if the input length is a multiple of n
 - mark the rightmost cell of one nondeterministically chosen block
- 2. Compare symbol by symbol the last block and the one ending with the marked cell
- 3. Accept if the two blocks are equal

$$\triangleright$$
 a a b a b a b a a b a b a a b b b b a \triangleleft $(n=3)$

- 1. Scan all the tape from left to right:
 - \blacksquare check if the input length is a multiple of n
 - mark the rightmost cell of one nondeterministically chosen block
- 2. Compare symbol by symbol the last block and the one ending with the marked cell
- 3. Accept if the two blocks are equal

$$\triangleright$$
 a a b a b a b a a b a b a a b b b b a \triangleleft $(n=3)$

- 1. Scan all the tape from left to right:
 - \blacksquare check if the input length is a multiple of n
 - mark the rightmost cell of one nondeterministically chosen block
- 2. Compare symbol by symbol the last block and the one ending with the marked cell
- 3. Accept if the two blocks are equal

Complexity:

O(n) states

 \Rightarrow 1-LA of size O(n)

Fixed working alphabet

$$\triangleright$$
 a a b a b a b b $\stackrel{\bullet}{a}$ a b a b a a b b b b b a \triangleleft $(n=3)$

- 1. Scan all the tape from left to right:
 - lacktriangle check if the input length is a multiple of n
 - mark the rightmost cell of one nondeterministically chosen block
- Compare symbol by symbol the last block and the one ending with the marked cell
- 3. Accept if the two blocks are equal

Complexity:

▶ O(n) states

 \Rightarrow 1-LA of size O(n)

Fixed working alphabet

Rewritings: to accept K_n it is enough to mark one tape cell during the first visit!

Recognizing K_n with Finite Automata

$$K_n = \{x_1 x_2 \cdots x_k x \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Recognizing K_n with Finite Automata

$$K_n = \{x_1 x_2 \cdots x_k x \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Finite automata

To recognize K_n each 1DFA requires a number of states at least double exponential in n

Proof: standard distinguishability arguments

Recognizing K_n with Finite Automata

$$K_n = \{x_1 x_2 \cdots x_k x \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Finite automata

To recognize K_n each 1DFA requires a number of states at least double exponential in n

Proof: standard distinguishability arguments

$1-LAs \rightarrow 1DFAs$

The gap remains double exponential even for 1-LAs that are allowed to rewrite only one cell!

Recognizing K_n with Finite Automata

$$K_n = \{x_1 x_2 \cdots x_k x \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Finite automata

To recognize K_n each 1DFA requires a number of states at least double exponential in n

Proof: standard distinguishability arguments

$1-LAs \rightarrow 1DFAs$

The gap remains double exponential even for 1-LAs that are allowed to rewrite only one cell!

⇒ Once-Marking 1-Limited Automata

Once-Marking 1-Limited Automata

Definition

A 1-limited automaton is said to be once marking (OM-1-LA) if

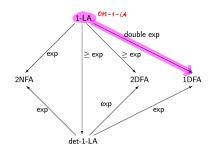
- in each computation there is a unique tape cell whose input symbol σ is replaced with its marked version $\mathring{\sigma}$
- all the remaining cells are never changed

Once-Marking 1-Limited Automata

Definition

- A 1-limited automaton is said to be once marking (OM-1-LA) if
 - in each computation there is a unique tape cell whose input symbol σ is replaced with its marked version $\mathring{\sigma}$
 - all the remaining cells are never changed

- Computational power: Regular languages
- Costs of the conversion to 1DFAs: Double exponential

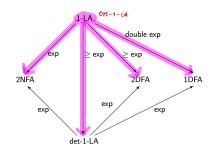


Once-Marking 1-Limited Automata

Definition

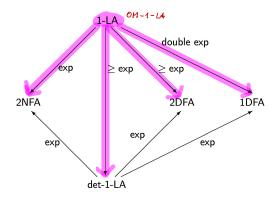
- A 1-limited automaton is said to be once marking (OM-1-LA) if
 - in each computation there is a unique tape cell whose input symbol σ is replaced with its marked version $\mathring{\sigma}$
 - all the remaining cells are never changed

- Computational power: Regular languages
- Costs of the conversion to 1DFAs: Double exponential



Conversions from Once-Marking 1-Limited Automata

Costs from nondeterministic OM-1-LAs:



Conversions from Once-Marking 1-Limited Automata

Costs from *nondeterministic* OM-1-LAs:



Costs from deterministic OM-1-LAs?

Theorem

For each n-state deterministic OM-1-LA $\mathcal A$ there exists an equivalent 2DFA $\mathcal A'$ with $O(n^3)$ states.

Theorem

For each n-state deterministic OM-1-LA $\mathcal A$ there exists an equivalent 2DFA $\mathcal A'$ with $O(n^3)$ states.

- ightharpoonup At the beggining \mathcal{A}' makes the same moves as \mathcal{A}
- ▶ When the marking move is reached:
 - \mathcal{A}' simulates it without marking
 - \mathcal{A}' saves the state g and the symbol σ in its control
- Remaining moves:
 - if symbol on the tape $eq \sigma$: simulated as in ${\mathcal A}$
 - otherwise A' calls a *verification procedure* to decide if the symbol is the marked one
 - According to the result A' choose the move
- Verification procedure:
 - "backward search" in the computation tree [Sipser '80

Theorem

For each n-state deterministic OM-1-LA $\mathcal A$ there exists an equivalent 2DFA $\mathcal A'$ with $O(n^3)$ states.

- ightharpoonup At the beggining \mathcal{A}' makes the same moves as \mathcal{A}
- ▶ When the marking move is reached:
 - \mathcal{A}' simulates it without marking
 - \mathcal{A}' saves the state g and the symbol σ in its control
- Remaining moves:
 - if symbol on the tape $eq \sigma$: simulated as in A
 - otherwise A' calls a *verification procedure* to decide if the
 - According to the result A' choose the move
- ► Verification procedure:
 - "backward search" in the computation tree [Sipser'80

Theorem

For each n-state deterministic OM-1-LA $\mathcal A$ there exists an equivalent 2DFA $\mathcal A'$ with $O(n^3)$ states.

- lacktriangle At the beggining \mathcal{A}' makes the same moves as \mathcal{A}
- ► When the marking move is reached:
 - \mathcal{A}' simulates it without marking \mathcal{A}' saves the state q and the symbol σ in its control
- ► Remaining moves:
 - otherwise A' calls a verification procedure to decide if the symbol is the marked one
 - According to the result A' choose the move
- Verification procedure:

Theorem

For each n-state deterministic OM-1-LA $\mathcal A$ there exists an equivalent 2DFA $\mathcal A'$ with $O(n^3)$ states.

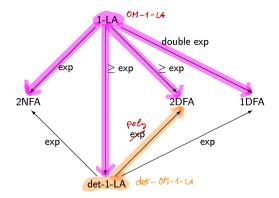
- lacktriangle At the beggining \mathcal{A}' makes the same moves as \mathcal{A}
- When the marking move is reached:
 - \mathcal{A}' simulates it without marking \mathcal{A}' saves the state q and the symbol σ in its control
- Remaining moves:
 - if symbol on the tape $eq \sigma$: simulated as in $\mathcal A$
 - otherwise \mathcal{A}' calls a *verification procedure* to decide if the symbol is the marked one
 - According to the result \mathcal{A}' choose the move
- ► Verification procedure:

Theorem

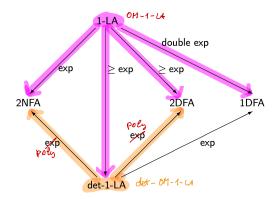
For each n-state deterministic OM-1-LA \mathcal{A} there exists an equivalent 2DFA \mathcal{A}' with $O(n^3)$ states.

- ightharpoonup At the beggining \mathcal{A}' makes the same moves as \mathcal{A}
- ▶ When the marking move is reached:
 - \mathcal{A}' simulates it without marking \mathcal{A}' saves the state q and the symbol σ in its control
- Remaining moves:
 - if symbol on the tape $\neq \sigma$: simulated as in ${\cal A}$
 - otherwise \mathcal{A}' calls a *verification procedure* to decide if the symbol is the marked one
 - According to the result \mathcal{A}' choose the move
- ► Verification procedure:
 - "backward search" in the computation tree [Sipser'80]

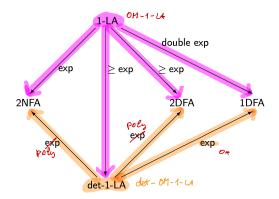
Size Costs of the Conversion From OM-1-LAs



Size Costs of the Conversion From OM-1-LAs



Size Costs of the Conversion From OM-1-LAs



Reducing the Gap to a Single Exponential Always-Marking 1-Limited Automata

Double role of nondeterminism in 1-LAs

On a tape cell:

First visit: To replace the content

by a nondeterministically chosen symbol γ

Next visits: To select a transition

the set of available transitions depends on $\gamma!$

Double role of nondeterminism in 1-LAs

On a tape cell:

First visit: To replace the content

by a nondeterministically chosen symbol γ

Next visits: To select a transition

the set of available transitions depends on $\gamma!$

Two "naif" restrictions of 1-LAs:

- Deterministic choice for rewritings
 Nondeterministic choice for next state and head movement
- 2. Nondeterministic choice for rewritings

 Deterministic choice for next state and head movement

Double role of nondeterminism in 1-LAs

On a tape cell:

First visit: To replace the content

by a nondeterministically chosen symbol γ

Next visits: To select a transition

the set of available transitions depends on $\gamma!$

Two "naif" restrictions of 1-LAs:

- 1. Deterministic choice for rewritings

 Nondeterministic choice for next state and head movement
- Nondeterministic choice for rewritings
 Deterministic choice for next state and head movement

Double role of nondeterminism in 1-LAs

On a tape cell:

First visit: To replace the content

by a nondeterministically chosen symbol $\boldsymbol{\gamma}$

Next visits: To select a transition

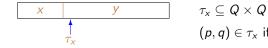
the set of available transitions depends on $\gamma!$

Two "naif" restrictions of 1-LAs:

- Deterministic choice for rewritings
 Nondeterministic choice for next state and head movement
- Nondeterministic choice for rewritings Deterministic choice for next state and head movement

For both restrictions, in the worst case the size gap to 1DFAs remains double exponential!

- First visit to a cell: direct simulation
- ► Further visits: transition tables



$$(p,q) \in \tau_x \text{ iff } x \stackrel{p}{\longrightarrow} q$$

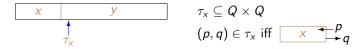
- Finite control of the simulating automaton:
 - transition table τ_{x}
 - set of possible current states

 2^{n^2} possible tables

 2^n possible sets

, possible sole

- First visit to a cell: direct simulation
- ► Further visits: transition tables

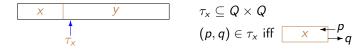


- Finite control of the simulating automaton:
 - transition table au_{x}
 - set of possible current states

 2^{n^2} possible tables 2^n possible sets

The double exponential gap is due to the fact that different computations can produce different τ_x for the same prefix x

- First visit to a cell: direct simulation
- ► Further visits: transition tables



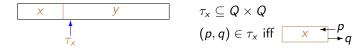
- Finite control of the simulating automaton:
 - transition table au_{x}
 - set of possible current states

 2^{n^2} possible tables 2^n possible sets

The double exponential gap is due to the fact that different computations can produce different τ_x for the same prefix x

Consider restrictions that avoid that!

- First visit to a cell: direct simulation
- ► Further visits: transition tables



- Finite control of the simulating automaton:
 - transition table au_{x}
 - set of possible current states

- 2^{n^2} possible tables
 - 2^n possible sets

The double exponential gap is due to the fact that different computations can produce different τ_x for the same prefix x

Consider restrictions that avoid that!

⇒ Always-Marking 1-Limited Automata

Always-Marking 1-Limited Automata

Definition

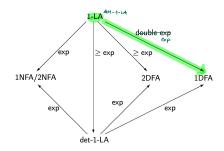
A 1-LA is said to be always marking if each time the head visits a tape cell for the first time, the input symbol σ in it is replaced with its marked version $\mathring{\sigma}$

Always-Marking 1-Limited Automata

Definition

A 1-LA is said to be always marking if each time the head visits a tape cell for the first time, the input symbol σ in it is replaced with its marked version $\mathring{\sigma}$

- Computational power: Regular languages
- Costs of the conversion to 1DFAs: Single exponential

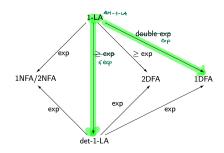


Always-Marking 1-Limited Automata

Definition

A 1-LA is said to be always marking if each time the head visits a tape cell for the first time, the input symbol σ in it is replaced with its marked version $\mathring{\sigma}$

- Computational power: Regular languages
- Costs of the conversion to 1DFAs: Single exponential



The Language J_n (n > 0)

$$J_n = \{x x_1 x_2 \cdots x_k \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

The Language J_n (n > 0)

$$J_n = \{x \, x_1 \, x_2 \cdots x_k \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Then:

- $ightharpoonup J_n = (K_n)^R$
- Each 2NFA accepting J_n has a number of states at least exponential in n
 - 2NFAs → 1DFAs costs exponential
 - K_n needs at least 2^{2^n} states to be accepted by 1DFAs
 - J_n and K_n have 2NFAs of the same size

The Language J_n (n > 0)

$$J_n = \{x \, x_1 \, x_2 \cdots x_k \mid k > 0, x_1, \dots, x_k, x \in \{a, b\}^n,$$

and $\exists j \in \{1, \dots, k\} \text{ s.t. } x_j = x\}$

Then:

- $ightharpoonup J_n = (K_n)^R$
- ► Each 2NFA accepting J_n has a number of states at least exponential in n
 - 2NFAs \rightarrow 1DFAs costs exponential
 - K_n needs at least 2^{2^n} states to be accepted by 1DFAs
 - J_n and K_n have 2NFAs of the same size

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match
 - then skip the remaining symbols of the current block otherwise if the current block is not finished
 - then continue inspection
 - otherwise *accepts* if the length of the remaining part of the input is a multiple of *n*

$$\triangleright$$
 $\stackrel{\circ}{a}$ $\stackrel{\circ}{b}$ $\stackrel{\circ}{a}$ $\stackrel{\circ}{a}$ $\stackrel{\circ}{b}$ $\stackrel{\circ}{a}$ $\stackrel{\circ}{a}$ $\stackrel{\circ}{b}$ $\stackrel{\circ}{a}$ $\stackrel{\circ}{a}$

▶ Visit and mark the first *n* tape cells

Then inspect the following blocks as follows:

- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match
 - then skip the remaining symbols of the current block
 - then continue inspection
 - otherwise *accepts* if the length of the remaining part of the input is a multiple of n

$$\triangleright$$
 $\stackrel{\bullet}{a}$ $\stackrel{b}{a}$ $\stackrel{a}{a}$ $\stackrel{a}{b}$ $\stackrel{a}{a}$ $\stackrel{b}{a}$ $\stackrel{b}{a}$ $\stackrel{a}{b}$ $\stackrel{b}{a}$ $\stackrel{b}{a}$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match
 - then skip the remaining symbols of the current block
 - then continue increasion
 - otherwise accepts if the length of the remaining part of the

$$\triangleright$$
 $\overset{\bullet}{a}$ $\overset{\bullet}{b}$ $\overset{\bullet}{a}$ $\overset{\bullet}{b}$ $\overset{\bullet}{b}$ $\overset{\bullet}{a}$ $\overset{\bullet}{b}$ bababababbbba \triangleleft $(n=3)$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block otherwise if the current block is not finished then continue inspection otherwise accepts if the length of the remaining part of the input is a multiple of n

$$\triangleright$$
 $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ babababbbbba \triangleleft $(n=3)$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block otherwise if the current block is not finished then continue inspection otherwise accepts if the length of the remaining part of the input is a multiple of n

$$\triangleright$$
 $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ bababaabbbba \triangleleft $(n=3)$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block otherwise if the current block is not finished then continue inspection otherwise accepts if the length of the remaining part of the input is a multiple of n

$$\triangleright$$
 $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ bababaabbbba \triangleleft $(n=3)$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block otherwise if the current block is not finished then continue inspection

otherwise *accepts* if the length of the remaining part of the input is a multiple of n

$$\triangleright$$
 $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ bababaabbbba \triangleleft $(n=3)$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block otherwise if the current block is not finished then continue inspection
 otherwise accepts if the length of the remaining part of the

otherwise accepts if the length of the remaining part of the input is a multiple of n

$$\triangleright$$
 $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ babababbbbba \triangleleft $(n=3)$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block otherwise if the current block is not finished then continue inspection otherwise accepts if the length of the remaining part of the input is a multiple of n

Implementation with O(n) states

$$\triangleright$$
 $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{b}$ $\stackrel{\bullet}{a}$ $\stackrel{\bullet}{b}$ babababbbbba \triangleleft $(n=3)$

- Visit and mark the first n tape cells Then inspect the following blocks as follows:
- ▶ When the head reaches a cell for the first time:
 - Mark it and locate the corresponding cell in the first block
 - If the symbols in the two cells do not match then skip the remaining symbols of the current block otherwise if the current block is not finished then continue inspection otherwise accepts if the length of the remaining part of the input is a multiple of n

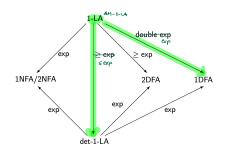
Implementation with O(n) states

Only deterministic transitions!

Simulations of AM-1-LAs

Summing up:

- ▶ det-1-LAs \rightarrow 2NFAs costs exponential
- ▶ J_n is accepted by a det-AM-1-LA with O(n) states
- ► Each 2NFA accepting J_n has a number of states at least exponential in n



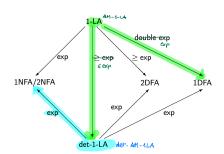
Simulations of AM-1-LAs

Summing up:

- ▶ det-1-LAs \rightarrow 2NFAs costs exponential
- ▶ J_n is accepted by a det-AM-1-LA with O(n) states
- ► Each 2NFA accepting J_n has a number of states at least exponential in n

Then:

 $\mbox{det-AM-1-LAs} \rightarrow \mbox{2NFAs} \\ \mbox{Exponential cost!}$



Simulations of AM-1-LAs

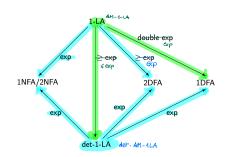
Summing up:

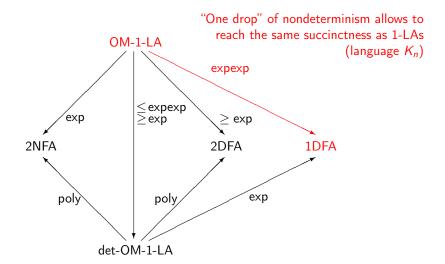
- ▶ det-1-LAs \rightarrow 2NFAs costs exponential
- ▶ J_n is accepted by a det-AM-1-LA with O(n) states
- ightharpoonup Each 2NFA accepting J_n has a number of states at least exponential in n

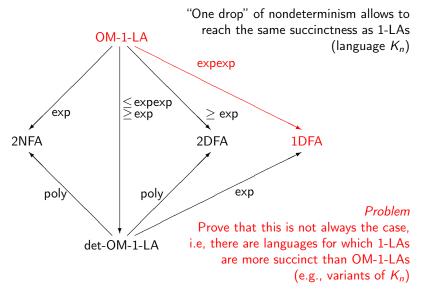
Then:

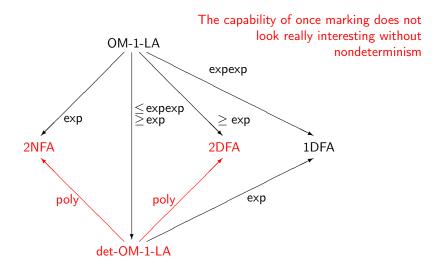
 $\begin{array}{l} \text{det-AM-1-LAs} \rightarrow \text{2NFAs} \\ \text{Exponential cost!} \end{array}$

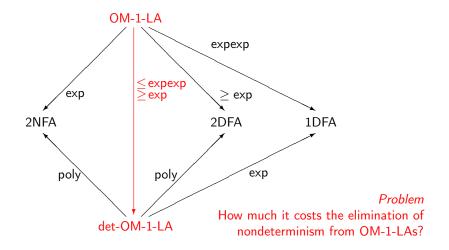
⇒ Even the costs of the remaining simulations are exponential



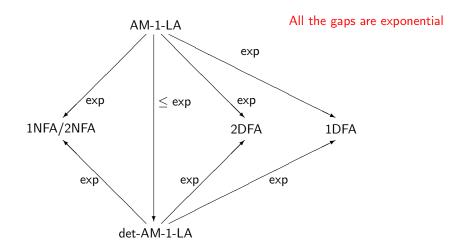




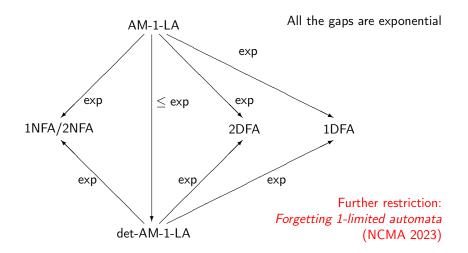




Conclusion: Always-Marking 1-Limited Automata



Conclusion: Always-Marking 1-Limited Automata



Further possible investigation lines

- Unary case
- ► Connections with the Sakoda and Sisper question (costs of 2NFA \rightarrow 2DFA and 1NFA \rightarrow 2DFA)
- **.**..

Further possible investigation lines

- Unary case
- ► Connections with the Sakoda and Sisper question (costs of $2NFA \rightarrow 2DFA$ and $1NFA \rightarrow 2DFA$)

...

Thank you for your attention!