Two-way Automata and Related Models: Power and Complexity

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

La Primavera dell'Informatica Teorica Italian Chapter of the EATCS June 23, 2022

Introduction

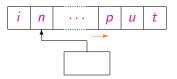
Investigation of formal models with respect to the sizes of their descriptions

(roughly: the number of symbols used to write down the description)

- Relationships between the sizes of the representations of a same class of objects (e.g., languages) by different formal systems (e.g., recognizers, grammars,...).
- Size costs of simulations

Two-Way Automata and Descriptional Complexity

Finite State Automata



One-way version

At each step the input head is moved one position to the right

- 1DFA: deterministic transitions
- INFA: nondeterministic transitions

A Very Preliminary Example

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$H_n = (a+b)^{n-1}a(a+b)^*$$

Check the *n*th symbol from the left!

Ex. *n* = 4

1DFA: n + 2 states

A Preliminary Example

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$I_n = (a+b)^* a(a+b)^{n-1}$$

Check the *n*th symbol from the right!

Nondeterminism!

$$(a, b) (a, b)$$

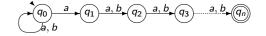
A Preliminary Example

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$I_n = (a+b)^* a(a+b)^{n-1}$$

Check the *n*th symbol from the right!

1NFA: n + 1 states

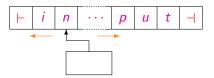


Miminal 1DFA: 2ⁿ states!

Remember the last factor on length nstates \equiv strings of length n over $\{a, b\}$

If we allow a DFA to reverse the head direction, then $n + \ldots$ states are sufficient!

Two-Way Automata: Technical Details



- ▶ Input surrounded by the *endmarkers* \vdash and \dashv
- Moves
 - to the *left*
 - to the right
 - stationary
- Initial configuration
- Accepting configuration
- Deterministic (2DFA) and nondeterministic (2NFA) versions
- Infinite computations are possible

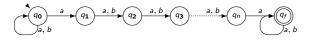
What about the power of these models?

They share the same computational power, namely they characterize the class of *regular languages*, however...

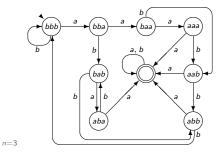
...some of them are more succinct

Main Example:
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$

1NFA: n + 2 states



Minimum 1DFA: $2^n + 1$ states



How many states on 2DFAs ?

Main Example:
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$

A technique for 2DFA:

- Move the head from left to right up to cell containing a
- Move n positions to the right
- ► If the symbol is a then accept else move n − 1 positions to the left and continue from the beginning

2DFA: 2n+... states

Main Example:
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$

A different technique for 2DFA:

- Check positions k s.t. $k \equiv 1 \pmod{n}$
- Check positions k s.t. $k \equiv 2 \pmod{n}$

• Check positions
$$k$$
 s.t. $k \equiv n \pmod{n}$

Even this strategy can be implemented using O(n) states!

Sweeping automata:

. . .

- Deterministic transitions
- Head reversals only at the endmarkers

Main Example:
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$

Summing up,

- \blacktriangleright *L_n* is accepted by
 - a 1NFA
 - a 2DFA
 - a sweeping automaton

with O(n) states

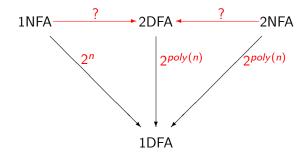
Each 1DFA is exponentially larger

Also for this example,

nondeterminism can be removed using two-way motion keeping a linear number of states

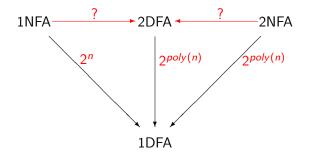
Is it always possible to replace nondeterminism by two-way motion without increasing too much the size?

Costs of the Optimal Simulations Between Automata



[Rabin&Scott '59, Sheperdson '59, Meyer&Fischer '71, ...]

Costs of the Optimal Simulations Between Automata



Problem ([Sakoda&Sipser '78])

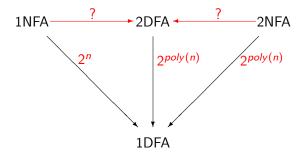
Do there exist polynomial simulations of

- INFAs by 2DFAs
- > 2NFAs by 2DFAs ?

Conjecture

These simulations are not polynomial

Costs of the Optimal Simulations Between Automata



Exponential upper bounds

deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

Polynomial lower bound

 $\Omega(n^2)$ for the cost of the simulation of 1NFAs by 2DFAs

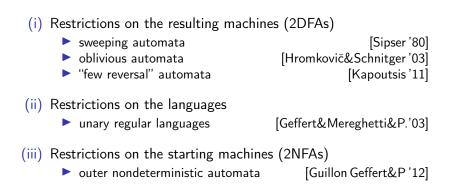
[Chrobak '86]

- Very difficult in its general form
- Not very encouraging obtained results:

Lower and upper bounds too far (Polynomial vs exponential)

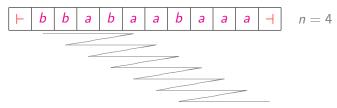
Hence:

Try to attack restricted versions of the problem!



$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

Naïf algorithm: compare input positions *i* and i + n, i = 1, 2, ...



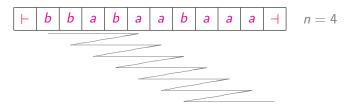
Even in this case O(n) states!

Oblivious Automata:

- Deterministic transitions
- Same "trajectory" on all inputs of the same length

$L_n = (a + b)^* a(a + b)^{n-1} a(a + b)^*$ Again!

Naïf algorithm: compare input positions i and i + n, i = 1, 2, ...



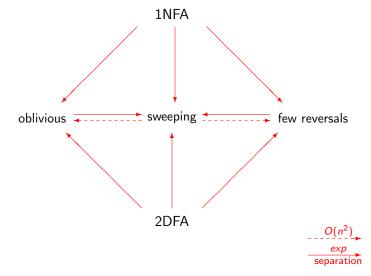
Number of head reversals: On input of length *m*:

- This technique uses about 2m reversals, a *linear number* in the input length
- The "sweeping" algorithm uses about 2n reversals, a constant number in the input length

"Few Reversal" Automata [Kapoutsis '11]:

On input of length *m* the number of reversals is o(m), i.e., sublinear

Restricted Models: Separations



[Sipser '80, Berman '80, Micali '81, Hromkovič&Schnitger '03, Kapoutsis '11, Kutrib Malcher&P '12]

Problem ([Sakoda&Sipser'78])

Do there exist polynomial simulations of

- ► 1NFAs by 2DFAs
- > 2NFAs by 2DFAs ?

Another possible restriction:

The unary case
$$\# \Sigma = 1$$

Theorem ([Geffert&Mereghetti&P.'03])

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.:

- nondeterministic choices and head reversals are possibile only at the end-markers
- ▶ *M* has at most 2*n* + 2 states
- *M* and *A* agrees on all inputs of length $> 5n^2$

(i) Subexponential simulation of unary 2NFAs by 2DFAs Each unary *n*-state 2NFA can be simulated by a 2DFA with e^{O(ln² n)} states [Geffert&Mereghetti&P.'03]

 (ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11] Outer Nondeterministic Automata [Guillon Geffert&P '12]:

 nondeterministic choices are possible only when the head is visiting the endmarkers

Hence:

- ► No restrictions on the *input alphabet*
- No restrictions on head reversals
- Deterministic transitions on "real" input symbols

Extensions of the results obtained for unary 2NFAs, in particular:

Subexponential simulation of outer NFAs by 2DFAs

Variants of the NFAs vs 2DFAs Question

(i) Restrictions on the resulting machines (2DFAs) sweeping automata [Sipser '80] oblivious automata [Hromkovič&Schnitger '03] "few reversal" automata [Kapoutsis '11] (ii) Restrictions on the languages unary regular languages [Geffert&Mereghetti&P.'03] (iii) Restrictions on the starting machines (2NFAs) outer nondeterministic automata [Guillon Geffert&P '12] (iv) Enlarge the family of simulating machines Hennie machines

[Guillon&P.&Prigioniero&Průša'18]

One-tape *deterministic* Turing machines working in *linear time* (extensions of 2DFAs)

Theorem ([Hennie '65])

Each language accepted by a Hennie machine is regular

Theorem ([Guillon&P.&Prigioniero&Průša'18]) Each n-state 2NFA can be simulated by a Hennie machine of size polynomial in n

Find a family of devices "between" 2DFAs and Hennie machines that can simulate 2NFAs using polynomial size

Limited Automata

Limited automata

- Model proposed by Hibbard in 1967 (scan limited automata)
- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

A Classical Example: Balanced Brackets

([][()])

How to recognize if a sequence of brackets is correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

 For each closing bracket locate its corresponding opening bracket

Limited automata!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

- a one-tape Turing machine
- which is allowed to overwrite the content of each tape cell only in the first d visits

Computational power

- ► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]
- 1-limited automata characterize regular languages

[Wagner&Wechsung '86]

Descriptional Complexity of 1-Limited Automata

The Language B_n (n > 0)

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Example (n = 3):

001|010|110|010|100|111|110

A Nondeterministic 1-Limited Automaton for B_n

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of *n*,
 - the last marked cell is the leftmost one of the last block, and
 - $\hfill\blacksquare$ the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that start from the marked cells and accept if they are equal

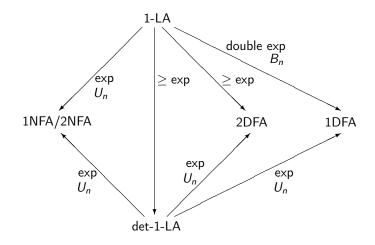
Complexity:

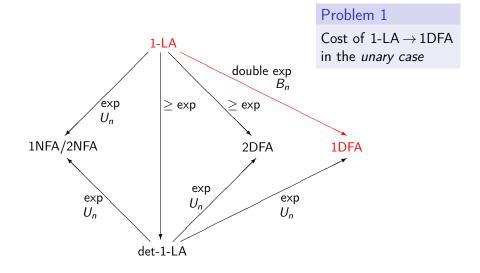
O(n) states

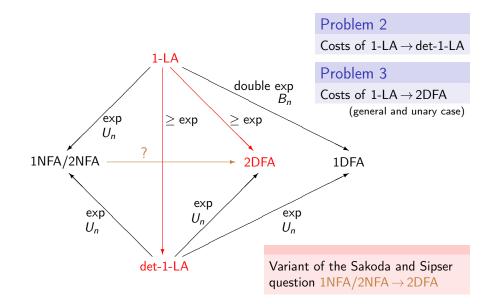
Fixed working alphabet
1-LA of size O(n)

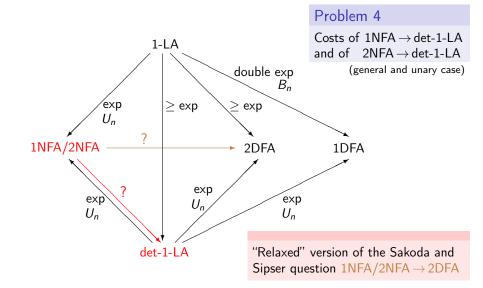
Finite automata

Each 1DFA accepting B_n needs a number of states double exponential in n









Conclusion

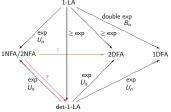
- The question of Sakoda and Sipser is very challenging
- In the investigation of its variants, many interesting and not artificial models have been considered
- The results obtained under restrictions, even if not solving the full problem, are not trivial and, in many cases, very deep
- Connections with space and structural complexity
 - questions
 - techniques

Connections with number theory (unary automata)

Possible lines of investigations

Find a family of devices "between" 2DFAs and Hennie machines that can simulate 2NFAs using polynomial size

- What is the cost of the simulation on 2NFAs by deterministic 1-limited automata?
- Any connections between descriptional complexity questions on variants of 1-limited automata and the Sakoda and Sipser question?



Thank you for your attention!