Two-way Automata and Related Models: Power and Complexity

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

La Primavera dell'Informatica Teorica Italian Chapter of the EATCS June 23, 2022

Introduction

Descriptional Complexity

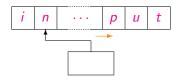
Investigation of formal models with respect to the sizes of their descriptions

(roughly: the number of symbols used to write down the description)

- ► Relationships between the sizes of the representations of a same class of objects (e.g., languages) by different formal systems (e.g., recognizers, grammars,...).
- Size costs of simulations
- **...**

Two-Way Automata and Descriptional Complexity

Finite State Automata



One-way version

At each step the input head is moved one position to the right

- ▶ 1DFA: deterministic transitions
- ► 1NFA: nondeterministic transitions

A Very Preliminary Example

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$H_n = (a+b)^{n-1}a(a+b)^*$$

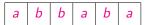
A Very Preliminary Example

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$H_n = (a+b)^{n-1}a(a+b)^*$$

Check the *n*th symbol from the left!

Ex.
$$n = 4$$



A Very Preliminary Example

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$H_n = (a+b)^{n-1}a(a+b)^*$$

Check the *n*th symbol from the left!

Ex.
$$n = 4$$

1DFA: n + 2 states

$$\Sigma = \{a,b\}$$
, fixed $n>0$:
$$I_n = (a+b)^* a (a+b)^{n-1}$$

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$I_n = (a+b)^* a(a+b)^{n-1}$$

Check the *n*th symbol from the right!

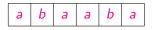
Ex.
$$n = 4$$

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$I_n = (a+b)^* a (a+b)^{n-1}$$

Check the *n*th symbol from the right!

Ex.
$$n = 4$$



Nondeterminism!

$$\begin{array}{c}
\bullet \\
\hline
q_0 \\
b \\
b
\end{array}
\qquad
\begin{array}{c}
\bullet \\
\hline
q_1 \\
\hline
\end{array}
\qquad
\begin{array}{c}
\bullet \\
\end{array}
\end{array}
\qquad
\begin{array}{c}
\bullet \\
\end{array}
\qquad
\begin{array}{c}
\bullet \\
\end{array}
\qquad
\begin{array}{c}
\bullet \\
\end{array}
\end{array}
\qquad
\begin{array}{c}
\bullet \\
\end{array}
\qquad
\begin{array}{c}
\bullet \\
\end{array}
\end{array}
\begin{array}{c}
\bullet \\
\end{array}
\begin{array}{c}
\bullet \\
\end{array}
\end{array}
\begin{array}{c}
\bullet \\
\end{array}$$

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$I_n = (a+b)^* a(a+b)^{n-1}$$

Check the *n*th symbol from the right!

1NFA: n+1 states

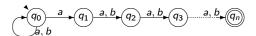
$$q_0$$
 a b q_2 a b q_3 a b q_n

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$I_n = (a+b)^* a(a+b)^{n-1}$$

Check the *n*th symbol from the right!

1NFA: n+1 states



Miminal 1DFA: 2ⁿ states!

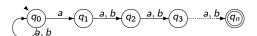
Remember the last factor on length n states \equiv strings of length n over $\{a, b\}$

$$\Sigma = \{a, b\}$$
, fixed $n > 0$:

$$I_n = (a+b)^* a(a+b)^{n-1}$$

Check the *n*th symbol from the right!

1NFA: n+1 states

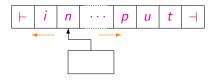


Miminal 1DFA: 2ⁿ states!

Remember the last factor on length n states \equiv strings of length n over $\{a, b\}$

If we allow a DFA to reverse the head direction, then $n + \dots$ states are sufficient!

Two-Way Automata: Technical Details



- ▶ Input surrounded by the *endmarkers* \vdash and \dashv
- Moves
 - to the *left*
 - to the *right*
 - stationary
- Initial configuration
- Accepting configuration
- Deterministic (2DFA) and nondeterministic (2NFA) versions
- Infinite computations are possible

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they characterize the class of *regular languages*,

1DFA, 1NFA, 2DFA, 2NFA

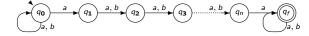
What about the power of these models?

They share the same computational power, namely they characterize the class of *regular languages*, however...

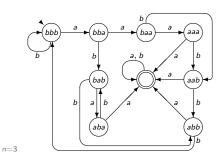
...some of them are more succinct

Main Example:
$$L_n = (a + b)^* a(a + b)^{n-1} a(a + b)^*$$

1NFA: n + 2 states

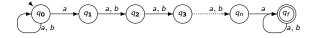


Minimum 1DFA: $2^n + 1$ states

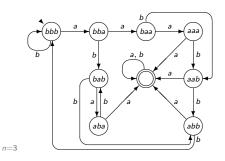


Main Example:
$$L_n = (a + b)^* a(a + b)^{n-1} a(a + b)^*$$

1NFA: n + 2 states



Minimum 1DFA: $2^n + 1$ states



How many states on 2DFAs?

Main Example:
$$L_n = (a + b)^* a(a + b)^{n-1} a(a + b)^*$$

A technique for 2DFA:

⊢ b a b	a a b b	a b b ⊢	n = 4
---------	---------	---------	-------

- ▶ Move the head from left to right up to cell containing a
- ► Move *n* positions to the right
- ▶ If the symbol is a then accept else move n − 1 positions to the left and continue from the beginning

2DFA: 2n+ states

Main Example:
$$L_n = (a + b)^* a(a + b)^{n-1} a(a + b)^*$$

A different technique for 2DFA:

$$oxed{\vdash} oxed{b} oxed{a} oxed{b} oxed{a} oxed{b} oxed{b} oxed{a} oxed{b} oxed{b} oxed{\dashv} n = 4$$

- ▶ Check positions k s.t. $k \equiv 1 \pmod{n}$
- ▶ Check positions k s.t. $k \equiv 2 \pmod{n}$

. . .

▶ Check positions k s.t. $k \equiv n \pmod{n}$

Main Example:
$$L_n = (a + b)^* a(a + b)^{n-1} a(a + b)^*$$

A different technique for 2DFA:

$$oxed{\vdash} oxed{b} oxed{a} oxed{b} oxed{a} oxed{b} oxed{b} oxed{a} oxed{b} oxed{b} oxed{\dashv} n = 4$$

- ▶ Check positions k s.t. $k \equiv 1 \pmod{n}$
- ► Check positions k s.t. $k \equiv 2 \pmod{n}$

. . .

▶ Check positions k s.t. $k \equiv n \pmod{n}$

Even this strategy can be implemented using O(n) states!

Main Example:
$$L_n = (a+b)^*a(a+b)^{n-1}a(a+b)^*$$

A different technique for 2DFA:

$$oxed{\vdash} oxed{b} oxed{a} oxed{b} oxed{a} oxed{b} oxed{b} oxed{a} oxed{b} oxed{b} oxed{\dashv} n = 4$$

- ▶ Check positions k s.t. $k \equiv 1 \pmod{n}$
- ► Check positions k s.t. $k \equiv 2 \pmod{n}$

. . .

▶ Check positions k s.t. $k \equiv n \pmod{n}$

Even this strategy can be implemented using O(n) states!

Sweeping automata:

- Deterministic transitions
- Head reversals only at the endmarkers

Main Example:
$$L_n = (a+b)^*a(a+b)^{n-1}a(a+b)^*$$

Summing up,

- L_n is accepted by
 - a 1NFA
 - a 2DFA
 - a sweeping automaton

with O(n) states

Each 1DFA is exponentially larger

Also for this example, nondeterminism can be removed using two-way motion keeping a linear number of states

Is it always possible to replace nondeterminism by two-way motion without increasing too much the size?

Main Example:
$$L_n = (a+b)^*a(a+b)^{n-1}a(a+b)^*$$

Summing up,

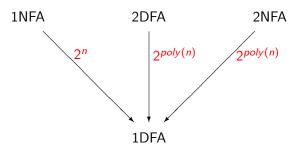
- $ightharpoonup L_n$ is accepted by
 - a 1NFA
 - a 2DFA
 - a sweeping automaton

with O(n) states

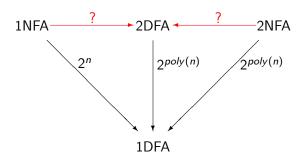
► Each 1DFA is exponentially larger

Also for this example, nondeterminism can be removed using two-way motion keeping a linear number of states

Is it always possible to replace nondeterminism by two-way motion without increasing too much the size?



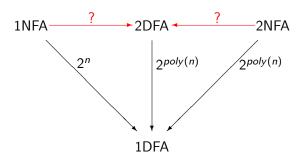
[Rabin&Scott '59, Sheperdson '59, Meyer&Fischer '71, ...]



Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of

- ► 1NFAs by 2DFAs
- ► 2NFAs by 2DFAs?



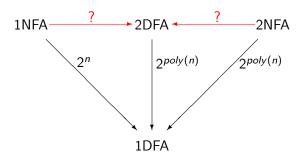
Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of

- ► 1NFAs by 2DFAs
- ► 2NFAs by 2DFAs?

Conjecture

These simulations are not polynomial



- Exponential upper bounds deriving from the simulations of 1NFAs and 2NFAs by 1DFAs
- Polynomial lower bound $\Omega(n^2)$ for the cost of the simulation of 1NFAs by 2DFAs [Chrobak '86]

Sakoda and Sipser Question

- Very difficult in its general form
- ▶ Not very encouraging obtained results:

Lower and upper bounds too far (Polynomial vs exponential)

► Hence:

Try to attack restricted versions of the problem!

NFAs vs 2DFAs: Restricted Versions

- (i) Restrictions on the resulting machines (2DFAs)
 - sweeping automata

[Sipser '80]

oblivious automata

[Hromkovič&Schnitger '03]

"few reversal" automata

[Kapoutsis '11]

- (ii) Restrictions on the languages
 - unarv regular languages

Geffert&Mereghetti&P.'03]

- (iii) Restrictions on the starting machines (2NFAs)
 - outer nondeterministic automata

[Guillon Geffert&P 12]

NFAs vs 2DFAs: Restricted Versions

- (i) Restrictions on the resulting machines (2DFAs)
 - sweeping automata

[Sipser '80]

oblivious automata

[Hromkovič&Schnitger '03]

"few reversal" automata

[Kapoutsis '11]

- (ii) Restrictions on the languages
 - unary regular languages

[Geffert&Mereghetti&P.'03]

- (iii) Restrictions on the starting machines (2NFAs)
 - outer nondeterministic automata [Guillon Geffert&

NFAs vs 2DFAs: Restricted Versions

- (i) Restrictions on the resulting machines (2DFAs)
 - sweeping automata

[Sipser '80]

oblivious automata

[Hromkovič&Schnitger '03]

"few reversal" automata

[Kapoutsis '11]

- (ii) Restrictions on the languages
 - unary regular languages

[Geffert&Mereghetti&P.'03]

- (iii) Restrictions on the starting machines (2NFAs)
 - outer nondeterministic automata

[Guillon Geffert&P '12]

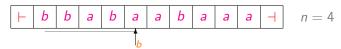
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

Naı̈f algorithm: compare input positions i and i + n, i = 1, 2, ...

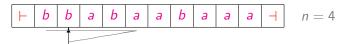
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

Naı̈f algorithm: compare input positions i and i + n, i = 1, 2, ...

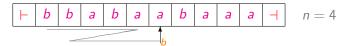
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



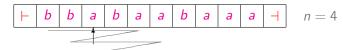
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



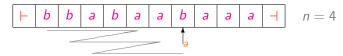
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



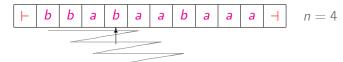
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



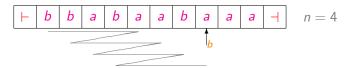
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



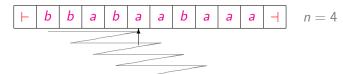
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



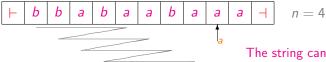
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

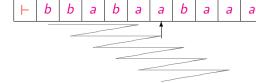


$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



The string can be accepted!

$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

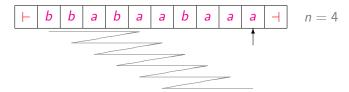


The string can be accepted! ...but our automaton continues

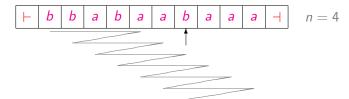
n = 4

to scan

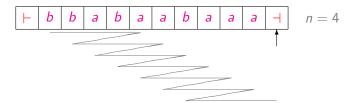
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



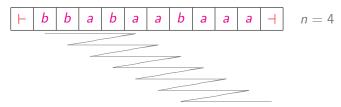
$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

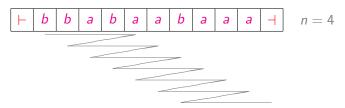


$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



Even in this case O(n) states!

$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

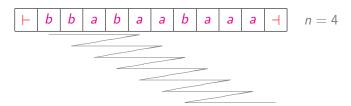


Even in this case O(n) states!

Oblivious Automata:

- Deterministic transitions
- Same "trajectory" on all inputs of the same length

$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!

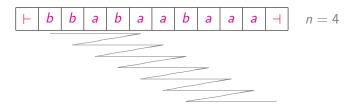


Number of head reversals:

On input of length *m*:

- ► This technique uses about 2*m* reversals, a *linear number* in the input length
- ► The "sweeping" algorithm uses about 2*n* reversals, a *constant number* in the input length

$$L_n = (a+b)^* a(a+b)^{n-1} a(a+b)^*$$
 Again!



Number of head reversals:

On input of length *m*:

- ► This technique uses about 2m reversals, a linear number in the input length
- ► The "sweeping" algorithm uses about 2*n* reversals, a *constant number* in the input length

Another Restricted Model

"Few Reversal" Automata [Kapoutsis '11]:

▶ On input of length m the number of reversals is o(m), i.e., sublinear

oblivious

sweeping

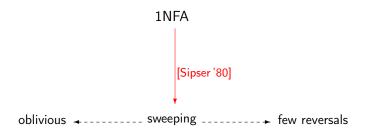
few reversals

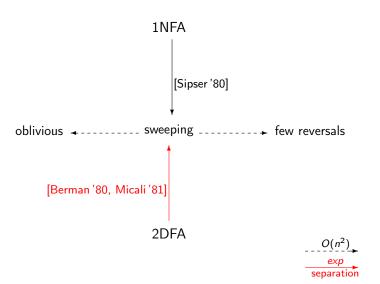
oblivious sweeping _____ few reversals

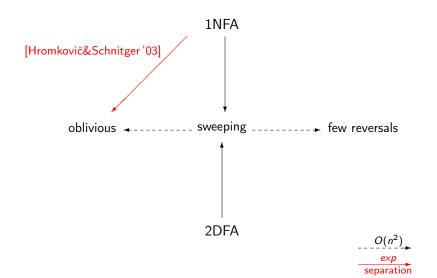
 $O(n^2)$

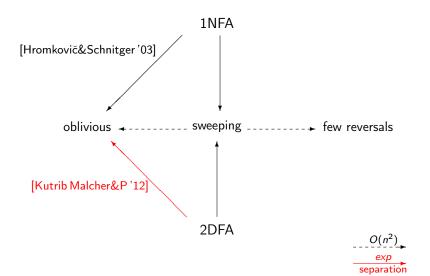
oblivious ←----- sweeping ------ few reversals

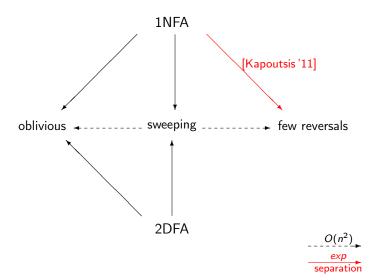
 $O(n^2)$

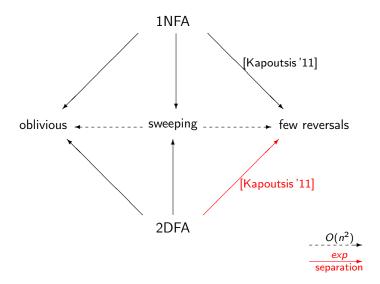


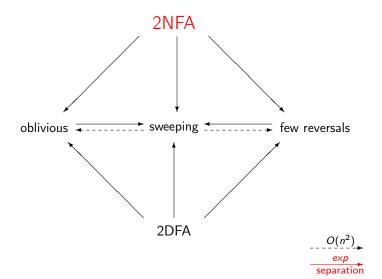












Sakoda&Sipser Question

Problem ([Sakoda&Sipser '78])

Do there exist polynomial simulations of

- ► 1NFAs by 2DFAs
- ▶ 2NFAs by 2DFAs?

Another possible restriction:

The unary case $\#\Sigma = 1$

A Normal Form for Unary 2NFAs

Theorem ([Geffert&Mereghetti&P.'03])

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.:

- nondeterministic choices and head reversals are possibile only at the end-markers
- \blacktriangleright M has at most 2n + 2 states
- ► M and A agrees on all inputs of length $> 5n^2$

Normal Form for Unary 2NFAs: Some Consequences

(i) Subexponential simulation of unary 2NFAs by 2DFAs Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ states [Geffert&Mereghetti&P.'03]

(ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L=NL [Geffert&P.'11]

Normal Form for Unary 2NFAs: Some Consequences

(i) Subexponential simulation of unary 2NFAs by 2DFAs Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O(\ln^2 n)}$ states [Geffert&Mereghetti&P.'03]

(ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition L = NL [Geffert&P.'11]

Restricted 2NFAs

Outer Nondeterministic Automata [Guillon Geffert&P '12]:

nondeterministic choices are possible only when the head is visiting the endmarkers

Restricted 2NFAs

Outer Nondeterministic Automata [Guillon Geffert&P '12]:

nondeterministic choices are possible only when the head is visiting the endmarkers

Hence:

- ▶ No restrictions on the *input alphabet*
- ▶ No restrictions on *head reversals*
- Deterministic transitions on "real" input symbols

Restricted 2NFAs

Outer Nondeterministic Automata [Guillon Geffert&P '12]:

nondeterministic choices are possible only when the head is visiting the endmarkers

Hence:

- ▶ No restrictions on the *input alphabet*
- ▶ No restrictions on *head reversals*
- Deterministic transitions on "real" input symbols

Extensions of the results obtained for unary 2NFAs, in particular:

Subexponential simulation of outer NFAs by 2DFAs

Variants of the NFAs vs 2DFAs Question

- Restrictions on the resulting machines (2DFAs)
 - sweeping automata [Sipser '80]
 - oblivious automata [Hromkovič&Schnitger '03] [Kapoutsis '11]
 - "few reversal" automata
- (ii) Restrictions on the languages
 - unary regular languages

[Geffert&Mereghetti&P.'03]

- Restrictions on the starting machines (2NFAs)
 - outer nondeterministic automata

[Guillon Geffert&P '12]

Variants of the NFAs vs 2DFAs Question

- (i) Restrictions on the resulting machines (2DFAs)
 - ▶ sweeping automata [Sipser '80]
 - ▶ oblivious automata [Hromkovič&Schnitger '03]
 - "few reversal" automata

[Kapoutsis '11]

- (ii) Restrictions on the languages
 - unary regular languages

[Geffert&Mereghetti&P.'03]

- (iii) Restrictions on the starting machines (2NFAs)
 - outer nondeterministic automata

[Guillon Geffert&P '12]

- (iv) Enlarge the family of simulating machines
 - ► Hennie machines

Guillon&P.&Prigioniero&Průša'18]

Variants of the NFAs vs 2DFAs Question

- (i) Restrictions on the resulting machines (2DFAs)
 - ▶ sweeping automata [Sipser '80]
 - ▶ oblivious automata [Hromkovič&Schnitger '03]
 - "few reversal" automata

[Kapoutsis '11]

- (ii) Restrictions on the languages
 - unary regular languages

[Geffert&Mereghetti&P.'03]

- (iii) Restrictions on the starting machines (2NFAs)
 - outer nondeterministic automata

[Guillon Geffert&P '12]

- (iv) Enlarge the family of simulating machines
 - ► Hennie machines

[Guillon&P.&Prigioniero&Průša'18]

Hennie Machines

One-tape *deterministic* Turing machines working in *linear time* (extensions of 2DFAs)

Theorem ([Hennie '65])

Each language accepted by a Hennie machine is regular

Hennie Machines

One-tape deterministic Turing machines working in linear time (extensions of 2DFAs)

Theorem ([Hennie '65])

Each language accepted by a Hennie machine is regular

Theorem ([Guillon&P.&Prigioniero&Průša'18])

Each n-state 2NFA can be simulated by a Hennie machine of size polynomial in n

Hennie Machines

One-tape deterministic Turing machines working in linear time (extensions of 2DFAs)

Theorem ([Hennie '65])

Each language accepted by a Hennie machine is regular

Theorem ([Guillon&P.&Prigioniero&Průša'18])

Each n-state 2NFA can be simulated by a Hennie machine of size polynomial in n

Find a family of devices "between" 2DFAs and Hennie machines that can simulate 2NFAs using polynomial size

Limited Automata

Limited automata

- Model proposed by Hibbard in 1967 (scan limited automata)
- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

A Classical Example: Balanced Brackets

([] [()])

How to recognize if a sequence of brackets is correctly balanced?

A Classical Example: Balanced Brackets

([] [()])

How to recognize if a sequence of brackets is correctly balanced?

► For each opening bracket locate its corresponding closing bracket

Use counters!

A Classical Example: Balanced Brackets

([] [()])

How to recognize if a sequence of brackets is correctly balanced?

► For each opening bracket locate its corresponding closing bracket

Use counters!

 For each closing bracket locate its corresponding opening bracket

Limited automata!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

- ▶ a one-tape Turing machine
- which is allowed to overwrite the content of each tape cell only in the first d visits

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

- ▶ a one-tape Turing machine
- which is allowed to overwrite the content of each tape cell only in the first d visits

Computational power

For each $d \ge 2$, d-limited automata characterize context-free languages

[Hibbard '67]

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d-limited automaton* is

- ▶ a one-tape Turing machine
- which is allowed to overwrite the content of each tape cell only in the first d visits

Computational power

- For each $d \ge 2$, d-limited automata characterize context-free languages [Hibbard '67]
- ► 1-limited automata characterize regular languages [Wagner&Wechsung '86]

Descriptional Complexity of 1-Limited Automata

The Language B_n (n > 0)

$$B_n = \{x_1 x_2 \cdots x_k x \in \{0, 1\}^* \mid |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

The Language B_n (n > 0)

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$
 and $x_j = x$, for some $1 \le j \le k$

Example
$$(n = 3)$$
:
0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 1 0

The Language B_n (n > 0)

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$
 and $x_j = x$, for some $1 \le j \le k$

Example (
$$n = 3$$
):
 $0.01|0.10|1.10|0.10|1.00|1.11|1.10$

- Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - \blacksquare the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- Compare symbol by symbol the two blocks that start from the marked cells and accept if they are equal

$$\triangleright$$
 0 0 1 0 1 0 $\hat{1}$ 1 0 0 1 0 1 0 1 1 1 $\hat{1}$ 1 0 \triangleleft ($n = 3$)

- Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that start from the marked cells and accept if they are equal

$$\triangleright$$
 0 0 1 0 1 0 $\hat{1}$ 1 0 0 1 0 1 0 1 1 1 $\hat{1}$ 1 0 \triangleleft ($n = 3$)

- Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- Compare symbol by symbol the two blocks that start from the marked cells and accept if they are equal

$$\triangleright$$
 0 0 1 0 1 0 $\hat{1}$ 1 0 0 1 0 1 0 1 1 1 $\hat{1}$ 1 0 \triangleleft ($n = 3$)

- Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- Compare symbol by symbol the two blocks that start from the marked cells and accept if they are equal

Complexity:

- \triangleright O(n) states
- ► Fixed working alphabet
 - \Rightarrow 1-LA of size O(n)

- Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- Compare symbol by symbol the two blocks that start from the marked cells and accept if they are equal

Complexity:

- \triangleright O(n) states
- Fixed working alphabet
 - \Rightarrow 1-LA of size O(n)

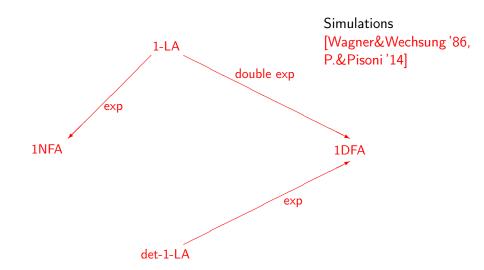
Finite automata

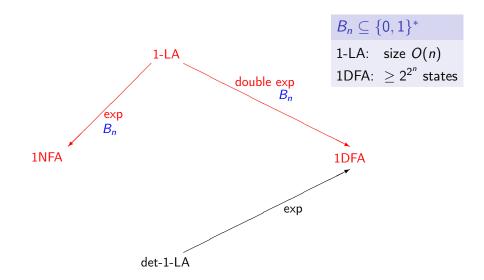
Each 1DFA accepting B_n needs a number of states double exponential in n

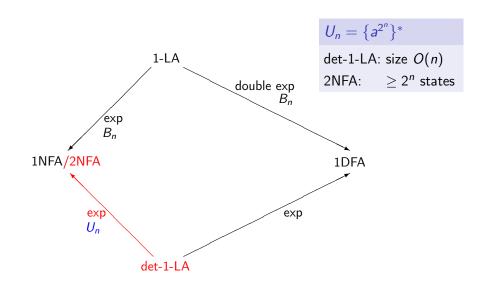
1-LA

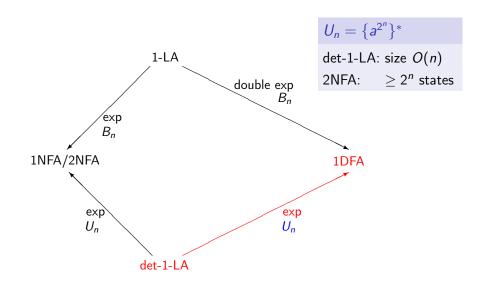
1NFA 1DFA

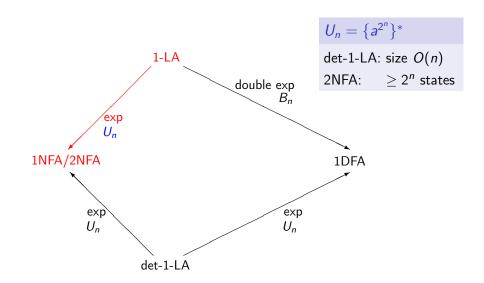
det-1-LA



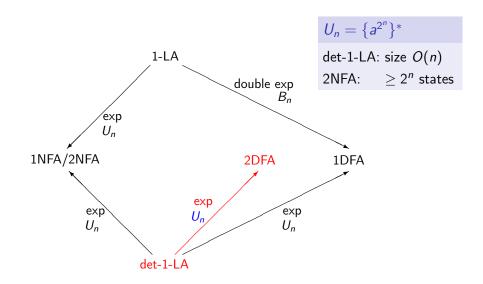


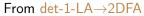


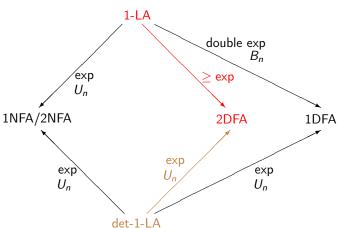


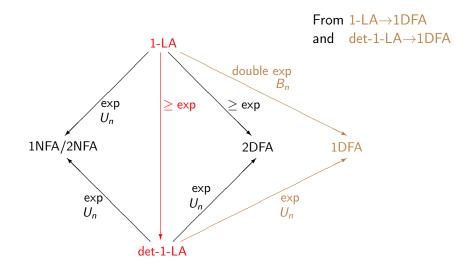


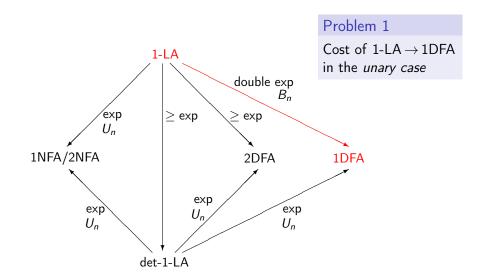


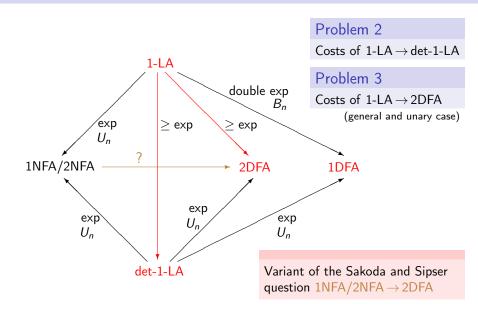


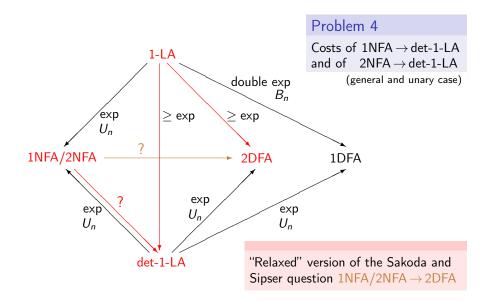












Conclusion

Final Remarks

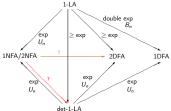
- ► The question of Sakoda and Sipser is very challenging
- ► In the investigation of its variants, many interesting and not artificial models have been considered
- The results obtained under restrictions, even if not solving the full problem, are not trivial and, in many cases, very deep
- Connections with space and structural complexity
 - questions
 - techniques
- Connections with number theory (unary automata)

Possible lines of investigations

Find a family of devices "between" 2DFAs and Hennie machines that can simulate 2NFAs using polynomial size

► What is the cost of the simulation on 2NFAs by *deterministic* 1-limited automata?

Any connections between descriptional complexity questions on variants of 1-limited automata and the Sakoda and Sipser question?



Thank you for your attention!