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Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]
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Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1, )1, (2, )2, . . . , (k , )k}

2-LA AD

I R ⊆ Ω∗k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism

Transducer T for h−1

T

AR

AD

-w

z ∈ h−1(w) �
��

@
@R

z ∈ R?
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z ∈ Dk?
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-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA



Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1, )1, (2, )2, . . . , (k , )k}

2-LA AD

I R ⊆ Ω∗k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA



Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1, )1, (2, )2, . . . , (k , )k} 2-LA AD

I R ⊆ Ω∗k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA



Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1, )1, (2, )2, . . . , (k , )k} 2-LA AD

I R ⊆ Ω∗k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA



Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1, )1, (2, )2, . . . , (k , )k} 2-LA AD

I R ⊆ Ω∗k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA



Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1, )1, (2, )2, . . . , (k , )k} 2-LA AD

I R ⊆ Ω∗k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA



Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs
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Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?
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Non-constant Number of Rewritings

f (n)-limited automaton (f : N→ N):
one-tape Turing machine s.t. for each accepted input w
there is an accepting computation in which each tape cell is
rewritten at most in the first f (|w |) visits

Theorem [Wechsung&Brandstädt ’79]
f (n)-LAs ≡ 1AuxPDAs-space(f (n))

i.e., class of languages by one-way PDAs extended with an auxiliary
worktape, where O(f (n)) space is used
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Descriptional Complexity
of Limited Automata



The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,

and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):
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A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0 C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)
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Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
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Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions
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Infinite sequence of integers σ1, σ2, . . . with:

σj := exponent of the highest power of 2 which divides j
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The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 013

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j
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The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11)R = 013

11 = 20+ 21 +23 = (1011)2

12 = 22+23 = (1100)2

BIS(w12)R = 23

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)
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A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence
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I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker
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I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!
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Descriptional Complexity
1-Limited Automata vs Finite Automata
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Simulations
[Wagner&Wechsung ’86,
P.&Pisoni ’14]
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in the unary case
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“Relaxed” version of the Sakoda and
Sipser question 1NFA/2NFA→ 2DFA



Variants of Limited Automata



Different Restrictions

Chomsky-Schützenberger Theorem:
Recognition of CFLs “reduced” to recognition of Dyck languages
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Different Restrictions

Dyck languages are accepted without fully using capabilities
of 2-limited automata

, e.g.,

I Moving to the right: only state q0 is used, rewritings only
when the head direction is reversed

I Moving to the left: no state change until the head direction is
reversed

I Only one symbol used for rewriting
I . . .
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Different Restrictions

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

YES!
Forgetting Automata [Jancar&Mráz&Plátek ’96]
I The content of any cell can be erased

in the 1st or 2nd visit (using one fixed symbol)
I No other changes of the tape are allowed

Strongly Limited Automata [P.’15]
I Cells rewritten only while moving to the left
I Only one state is used while moving to the right
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Strongly Limited Automata

I Computational power: same as 2-limited automata (CFLs)

I Descriptional power: the sizes of equivalent
CFGs
PDAs
strongly limited automata

are polynomially related (while 2-limited automata can be
exponentially smaller than PDAs)

I CFLs → strongly limited automata:
conversion from CFGs which heavily uses nondeterminism

The class of languages accepted by deterministic strongly
limited automata is a proper subclass of DCFLs.
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Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)
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Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)



Conclusion



Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-drive PDAs):
any investigation?
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Thank you for your attention!
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