
Limited Automata:
Properties, Complexity, Variants

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

DCFS 2019 – Košice, Slovakia
July 17, 2019

Introduction

Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages

Introduction

Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages

Introduction

Limited automata

I Model proposed by Thomas N. Hibbard in 1967
(scan limited automata)

I One-tape Turing machines with rewriting restrictions

I Variants characterizing regular, context-free, deterministic
context-free languages

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

Introduction

Outline

I An Introductory Example
I Definition of Limited Automata
I Computational Power
I Descriptional Complexity (Part I)
I Limited Automata and Unary Languages
I Descriptional Complexity (Part II)

...open problems...
I Variants and related models
I Conclusion

A Classical Example: Balanced Brackets

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(1 (2)2 (2 (3)3)2)1

How to recognize if a sequence of brackets is correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→ ←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)

xx

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)

x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

(

(

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)

xx

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

(

(

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

xx

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)

x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

(

(

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

xx

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)

x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

(

(

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6

−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→

←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

A Classical Example: Balanced Brackets

((

x

6

((

x

6

)x

x

6

((

x

6

((

x

6

)x

x

6

)x

x

6

)x

x

6−→ ←−

How to recognize if a sequence of brackets its correctly balanced?

I For each opening bracket
locate its corresponding closing bracket

Use counters!

I For each closing bracket
locate its corresponding opening bracket

Limited automata!

Limited Automata
Definition and Computational Power

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Technical details:
I Input surrounded by two end-markers
I End-markers are never overwritten
I The head cannot exceed the end-markers

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]

Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to overwrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]

The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2Pushdown Automata

type 3Finite Automata

The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (any d ≥ 2)

type 3Finite Automata

The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (any d ≥ 2)

type 31-Limited Automata

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1,)1, (2,)2, . . . , (k ,)k}

2-LA AD

I R ⊆ Ω∗k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism

Transducer T for h−1

T

AR

AD

-w

z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1,)1, (2,)2, . . . , (k ,)k}

2-LA AD

I R ⊆ Ω∗k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗k is a regular language

Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w -z ∈ h−1(w)

�
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Theorem ([Chomsky&Schützenberger ’63])
Each CFL L ⊆ Σ∗ can be expressed as L = h(Dk ∩ R) where:
I Dk ⊆ Ω∗k is a Dyck language (i.e., balanced brackets)

over Ωk = {(1,)1, (2,)2, . . . , (k ,)k} 2-LA AD

I R ⊆ Ω∗k is a regular language Finite automaton AR

I h : Ωk → Σ∗ is a homomorphism Transducer T for h−1

T

AR

AD

-w z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Suitably simulating this combination of T, AD and AR we obtain a 2-LA

Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs

Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs

Determinism vs Nondeterminism

I Simulations in [Hibbard ’67]:
Determinism is preserved by the simulation PDAs by 2-LAs,
but not by the converse simulation

I A different simulation of 2-LAs by PDAs,
which preserves determinism, is given in [P.&Pisoni ’15]

Deterministic 2-Limited Automata ≡ DCFLs

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be accepted
by any deterministic (d − 1)-limited automaton

Claim [Hibbard ’67]
For any d > 0, the set of Palindromes cannot be
accepted by any deterministic d-LA

Hence
⋃
d>0

det-d-LA ⊂ CFL properly

Open Problem

Any proof?

Non-constant Number of Rewritings

f (n)-limited automaton (f : N→ N):
one-tape Turing machine s.t. for each accepted input w
there is an accepting computation in which each tape cell is
rewritten at most in the first f (|w |) visits

Theorem [Wechsung&Brandstädt ’79]
f (n)-LAs ≡ 1AuxPDAs-space(f (n))

i.e., class of languages by one-way PDAs extended with an auxiliary
worktape, where O(f (n)) space is used

Non-constant Number of Rewritings

f (n)-limited automaton (f : N→ N):
one-tape Turing machine s.t. for each accepted input w
there is an accepting computation in which each tape cell is
rewritten at most in the first f (|w |) visits

Theorem [Wechsung&Brandstädt ’79]
f (n)-LAs ≡ 1AuxPDAs-space(f (n))

i.e., class of languages by one-way PDAs extended with an auxiliary
worktape, where O(f (n)) space is used

Descriptional Complexity
of Limited Automata

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,

and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0

The Language Bn (n > 0)

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Example (n = 3):

0 0 1|0 1 0|1 1 0|0 1 0|1 0 0|1 1 1|1 1 0

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0 C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0 C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

x x x

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

x x x

|

x x x

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Deterministic 2-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

x x x

|

x x x

|

x x x

|

x x x

|

1̂ 1̂ 0̂ C (n = 3)

1. Scan all the tape from left to right
and check if the input length is a multiple of n

2. Move to the left and mark the rightmost block of n symbols
3. Compare the other blocks of length n (from the right),

symbol by symbol, with the last block
4. When the matching block is found, accept

Complexity:

I O(n) states
I Fixed working alphabet

⇒ det-2-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that starts from
the marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that starts from
the marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that starts from
the marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that starts from
the marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

A Nondeterministic 1-Limited Automaton for Bn

B 0 0 1

|

0 1 0

|

1̂ 1 0

|

0 1 0

|

1 0 0

|

1 1 1

|

1̂ 1 0 C (n = 3)

1. Scan all the tape from left to right
and mark two nondeterministically chosen cells

2. Check that:
the input length is a multiple of n,
the last marked cell is the leftmost one of the last block, and
the other marked cell is the leftmost one of another block

3. Compare symbol by symbol the two blocks that starts from
the marked cells

4. Accept if the two blocks are equal

Complexity:

I O(n) states
I Fixed working alphabet

⇒ 1-LA of size O(n)

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Lower bounds for Bn

Bn = {x1 x2 · · · xk x ∈ {0, 1}∗ | |x1| = · · · = |xk | = |x | = n, k > 0,
and xj = x , for some 1 ≤ j ≤ k }

Finite automata
Each 1DFA accepting Bn requires a number of
states at least double exponential in n

Proof: standard distinguishability arguments

1-LAs → 1DFAs

At least double
exponential gap!

CFGs and PDAs
Each CFG generating Bn (PDA recognizing Bn)
has size at least exponential in n

Proof: “interchange” lemma for CFLs

det-2-LAs → PDAs

At least
exponential gap!

Size Costs of Simulations
d-LAs versus PDAs (or CFGs), d ≥ 2

I 2-LAs → PDAs [P.&Pisoni ’15]
d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt ’18]
exponential

I det-2-LAs → DPDAs [P.&Pisoni ’15]
double exponential upper bound (optimal?)
exponential if the input for the simulating DPDA is end-marked

I PDAs → 2-LAs,
DPDAs → det-2-LAs [P.&Pisoni ’15]
polynomial

Size Costs of Simulations
d-LAs versus PDAs (or CFGs), d ≥ 2

I 2-LAs → PDAs [P.&Pisoni ’15]
d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt ’18]
exponential

I det-2-LAs → DPDAs [P.&Pisoni ’15]
double exponential upper bound (optimal?)
exponential if the input for the simulating DPDA is end-marked

I PDAs → 2-LAs,
DPDAs → det-2-LAs [P.&Pisoni ’15]
polynomial

Size Costs of Simulations
d-LAs versus PDAs (or CFGs), d ≥ 2

I 2-LAs → PDAs [P.&Pisoni ’15]
d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt ’18]
exponential

I det-2-LAs → DPDAs [P.&Pisoni ’15]
double exponential upper bound (optimal?)
exponential if the input for the simulating DPDA is end-marked

I PDAs → 2-LAs,
DPDAs → det-2-LAs [P.&Pisoni ’15]
polynomial

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Descriptional Complexity - TO BE CONTINUED...

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Descriptional Complexity - TO BE CONTINUED...

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Descriptional Complexity - TO BE CONTINUED...

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Descriptional Complexity - TO BE CONTINUED...

Size Costs of Simulations
1-LAs versus Finite Automata [Wagner&Wechsung ’86, P.&Pisoni ’14]

I 1-LAs → 1NFA
exponential

I 1-LAs → 1DFA
double exponential

I det-1-LAs → 1DFA
exponential

Double role of nondeterminism in 1-LAs
On a tape cell:

First visit: To overwrite the content
by a nondeterministically chosen symbol σ

Next visits: To select a transition
the set of available transitions depends on σ!

Descriptional Complexity - TO BE CONTINUED...

Limited Automata and Unary Languages

Limited Automata and Unary Languages

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I Improvements in [P.&Prigioniero ’19]:

Languages Ln = {a2n} and Un = {a2n}∗

Recognition by “small” deterministic 1-LAs

Exponential gaps

Limited Automata and Unary Languages

I Preliminary observations in [P.&Pisoni ’14]

I Several results in [Kutrib&Wendlandt ’15]
(including superpolynomial gaps 1-LAs→ finite automata)

I Improvements in [P.&Prigioniero ’19]:

Languages Ln = {a2n} and Un = {a2n}∗

Recognition by “small” deterministic 1-LAs

Exponential gaps

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

X3

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

4

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

X3

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only exactly one a is left on the tape

I O(n) states

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X

0

a

X1 a

X

0

a

X2 a

X

0

a

X1 a

X

0

a

X3 a

X

0

a

X1 a

X

0

a

X2 a

X

0

a

X1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only exactly one a is left on the tape

I O(n) states

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X

0 a

X

1 a

X

0

a

X2 a

X

0 a

X

1 a

X

0

a

X3 a

X

0 a

X

1 a

X

0

a

X2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only exactly one a is left on the tape

I O(n) states

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

X3 a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only exactly one a is left on the tape

I O(n) states

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0 a

X

3 a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only exactly one a is left on the tape

I O(n) states

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0 a

X

3 a

X

0 a

X

1 a

X

0 a

X

2 a

X

0 a

X

1 a

X

0

a

4

I Make n sweeps of the tape

I At each sweep overwrite each “odd” a

I Accept if only exactly one a is left on the tape

I O(n) states

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

X3

a

X0

a

X1

a

X0

a

X2

a

X0

a

X1

a

X0

a

4

Possible variation:

I Overwrite using the number of current sweep
(counting from 0)

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

aX

0 a

X1 aX

0 a

X2 aX

0 a

X1 aX

0 a

X3 aX

0 a

X1 aX

0 a

X2 aX

0 a

X1 aX

0 a

4

Possible variation:

I Overwrite using the number of current sweep
(counting from 0)

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

aX

0

aX

1

aX

0 a

X2 aX

0

aX

1

aX

0 a

X3 aX

0

aX

1

aX

0 a

X2 aX

0

aX

1

aX

0 a

4

Possible variation:

I Overwrite using the number of current sweep
(counting from 0)

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0 a

X3 aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0 a

4

Possible variation:

I Overwrite using the number of current sweep
(counting from 0)

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

aX

3

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0 a

4

Possible variation:

I Overwrite using the number of current sweep
(counting from 0)

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

aX

3

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

a

4

Possible variation:

I Overwrite using the number of current sweep
(counting from 0)

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell

A Linear Bounded Automaton for Ln = {a2
n}

Idea: “divide” n times the input length by 2

B C

n = 4

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

aX

3

aX

0

aX

1

aX

0

aX

2

aX

0

aX

1

aX

0

a

4

Possible variation:

I Overwrite using the number of current sweep
(counting from 0)

We can build a 1-LA that, for each tape cell,
guesses the number of the sweep

in which this linear bounded automaton rewrites the cell

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

00

a

11

a

00

a

22

a

00

a

11

a

00

a

33

a

00

a

11

a

00

a

22

a

00

a

11

a

00

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

3

3 a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

3

3 a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

3

3 a

0

0 a

1

1 a

0

0 a

2

2 a

0

0 a

1

1 a

0

0 a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a

1

1 a0

0

a

2

2 a0

0

a

1

1 a0

0

a

3

3 a0

0

a

1

1 a0

0

a

2

2 a0

0

a

1

1 a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a

2

2 a0

0

a1

1

a0

0

a

3

3 a0

0

a1

1

a0

0

a

2

2 a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

3

3 a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a3

3

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a3

3

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)

We can do better!
Size O(n), only deterministic transitions

A 1-Limited Automaton for Ln = {a2
n}

B C

n = 4

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a3

3

a0

0

a1

1

a0

0

a2

2

a0

0

a1

1

a0

0

a

4

I 1st sweep:
For each cell, guess and write a symbol in {0, 1, . . . , n}

I (i + 2)th sweep, i = 0, . . . , n:
Verify that the symbol i occurs in all odd positions,
where positions are counted ignoring cells containing j < i

I Size O(n)
We can do better!

Size O(n), only deterministic transitions

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Binary Carry Sequence

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Binary Carry Sequence

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0

1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Binary Carry Sequence

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0 1

0 2 0 1 0 3 0 1 0 2 0 1 0 4

Binary Carry Sequence

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0 1 0 2

0 1 0 3 0 1 0 2 0 1 0 4

Binary Carry Sequence

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0 1 0 2 0 1 0 3

0 1 0 2 0 1 0 4

Binary Carry Sequence

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Binary Carry Sequence

The String on The Tape

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

I First element: 0

I Next elements: w → ww ′

w part already constructed,
w ′ copy of w , where the last symbol replaced by its successor

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Binary Carry Sequence

The Binary Carry Sequence: Definition

σ1

0

σ2

1

σ3

0

σ4

2

σ5

0

σ6

1

σ7

0

σ8

3

σ9

0

σ10

1

σ11

0

σ12

2

σ13

0

σ14

1

σ15

0

σ16

4

· · ·

· · ·

Infinite sequence of integers σ1, σ2, . . . with:

σj := exponent of the highest power of 2 which divides j

The Binary Carry Sequence: Definition

σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0
σ12

2
σ13

0
σ14

1
σ15

0
σ16

4
· · ·
· · ·

Infinite sequence of integers σ1, σ2, . . . with:

σj := exponent of the highest power of 2 which divides j

The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 013

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 013

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 0. . .

13

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 01. . .

3

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 013

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 013

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

I wj := σ1σ2 · · ·σj
i.e., prefix of length j of the binary carry sequence

I BIS(wj) := Backward Increasing Sequence of wj

longest increasing sequence obtained with a greedy method
by inspecting wj from the end

w11 =
σ1

0
σ2

1
σ3

0
σ4

2
σ5

0
σ6

1
σ7

0
σ8

3
σ9

0
σ10

1
σ11

0

BIS(w11)R = 013

11 = 23 + 21 + 20

= (1011)2

Property 1

BIS(wj) = positions of 1s in
the binary representation of j

The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11)R = 013

11 = 20+ 21 +23 = (1011)2

12 = 22+23 = (1100)2

BIS(w12)R = 23

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)

The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11)R = 013

11 = 20+ 21 +23 = (1011)2

12 = 22+23 = (1100)2

BIS(w12)R = 23

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)

The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11)R = 013

11 = 20+ 21 +23 = (1011)2

12 = 22+23 = (1100)2

BIS(w12)R = 23

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)

The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11)R = 013

11 = 20+ 21 +23 = (1011)2

12 = 22+23 = (1100)2

BIS(w12)R = 23

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)

The Binary Carry Sequence: Properties

w11 = 0 1 0 2 0 1 0 3 0 1 0

BIS(w11)R = 013

11 = 20+ 21 +23 = (1011)2

12 = 22+23 = (1100)2

BIS(w12)R = 23

w12 = 0 1 0 2 0 1 0 3 0 1 0 2

Property 2

The symbol of the binary carry sequence in
position j + 1 is the smallest nonnegative
integer that does not occur in BIS(wj)

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0 a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6

. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6

. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6

i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6

. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6

. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6

. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6

. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6

. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6

. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6

. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I 0 is written on the first cell

I For j > 0, with wj on the first j cells, head on cell j :
Move to the left to compute the smallest i /∈ BIS(wj)

Move to the right to search the first cell containing a

Write i

I When n is written on a cell:
Move one position to the right
Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)

I With a minor modification we can obtain
a deterministic 1-LA of size O(n) accepting Un = {a2n}∗

I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)

I With a minor modification we can obtain
a deterministic 1-LA of size O(n) accepting Un = {a2n}∗

I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)

I With a minor modification we can obtain
a deterministic 1-LA of size O(n) accepting Un = {a2n}∗

I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)

I With a minor modification we can obtain
a deterministic 1-LA of size O(n) accepting Un = {a2n}∗

I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)

I With a minor modification we can obtain
a deterministic 1-LA of size O(n) accepting Un = {a2n}∗

I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)

I With a minor modification we can obtain
a deterministic 1-LA of size O(n) accepting Un = {a2n}∗

I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!

A Deterministic 1-LA for Ln = {a2
n}

Idea: Write on the tape a prefix of the binary carry sequence

B C

6

n = 4

a

0

a

1

a

0

a

2

a

0

a

1

a

0

a

3

6i = 2

a

0

6

a

1

6

a

0

6. . .

a

2

6i = 2

a

0

6. . .

a

1

6. . .

a

0

6. . .

a

4

6

I Each cell is rewritten only in the first visit
I Tape alphabet {0, . . . , n}
I Finite state control with O(n) states
I Total size of the description O(n)

I With a minor modification we can obtain
a deterministic 1-LA of size O(n) accepting Un = {a2n}∗

I Each 2NFA accepting Un

should have at least 2n states
[Mereghetti&P.’00] det-1-LAs→ 2NFAs

Exponential gap!

Descriptional Complexity
1-Limited Automata vs Finite Automata

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA

/2NFA 2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
BnUn

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��
�
��

�
��*

exp
Un

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA

/2NFA 2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

BnUn

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp

Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp

Un

Simulations
[Wagner&Wechsung ’86,
P.&Pisoni ’14]

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA

/2NFA 2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp

Un

Bn ⊆ {0, 1}∗

1-LA: size O(n)

1DFA: ≥ 22
n
states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA

2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp

Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA

2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp
Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA

2DFA

1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Un = {a2
n}∗

det-1-LA: size O(n)

2NFA: ≥ 2n states

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

From det-1-LA→2DFA

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

From 1-LA→1DFA
and det-1-LA→1DFA

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 1
Cost of 1-LA→ 1DFA
in the unary case

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 2
Costs of 1-LA→ det-1-LA

Problem 3
Costs of 1-LA→ 2DFA

(general and unary case)

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 2
Costs of 1-LA→ det-1-LA

Problem 3
Costs of 1-LA→ 2DFA

(general and unary case)

Variant of the Sakoda and Sipser
question 1NFA/2NFA→ 2DFA

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 4
Costs of 1NFA→ det-1-LA
and of 2NFA→ det-1-LA

(general and unary case)

Size of Limited Automata vs Finite Automata

det-1-LA

1NFA/2NFA 2DFA 1DFA

1-LA

-?

@
@
@
@
@
@@R

?

�
�
�

�
�
��	

exp

Bn

Un

?

≥ exp

@
@
@
@
@
@@R

≥ exp

H
HHH

HHHH
HHH

HHj

double exp
Bn

@
@
@

@
@

@@I

exp
Un

�
�
�
�
�
���

exp
Un

��
��

�
��

�
��

�
��*

exp
Un

Problem 4
Costs of 1NFA→ det-1-LA
and of 2NFA→ det-1-LA

(general and unary case)

“Relaxed” version of the Sakoda and
Sipser question 1NFA/2NFA→ 2DFA

Variants of Limited Automata

Different Restrictions

Chomsky-Schützenberger Theorem:
Recognition of CFLs “reduced” to recognition of Dyck languages

T

AR

AD

-w -z ∈ h−1(w) �
��

@
@R

z ∈ R?

@
@

z ∈ Dk?

�
�

-w ∈ L?∧

Different Restrictions

Dyck languages are accepted without fully using capabilities
of 2-limited automata

, e.g.,

I Moving to the right: only state q0 is used, rewritings only
when the head direction is reversed

I Moving to the left: no state change until the head direction is
reversed

I Only one symbol used for rewriting
I . . .

Different Restrictions

Dyck languages are accepted without fully using capabilities
of 2-limited automata, e.g.,

I Moving to the right: only state q0 is used, rewritings only
when the head direction is reversed

I Moving to the left: no state change until the head direction is
reversed

I Only one symbol used for rewriting
I . . .

Different Restrictions

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

YES!
Forgetting Automata [Jancar&Mráz&Plátek ’96]
I The content of any cell can be erased

in the 1st or 2nd visit (using one fixed symbol)
I No other changes of the tape are allowed

Strongly Limited Automata [P.’15]
I Cells rewritten only while moving to the left
I Only one state is used while moving to the right

Different Restrictions

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

YES!
Forgetting Automata [Jancar&Mráz&Plátek ’96]
I The content of any cell can be erased

in the 1st or 2nd visit (using one fixed symbol)
I No other changes of the tape are allowed

Strongly Limited Automata [P.’15]
I Cells rewritten only while moving to the left
I Only one state is used while moving to the right

Different Restrictions

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

YES!
Forgetting Automata [Jancar&Mráz&Plátek ’96]
I The content of any cell can be erased

in the 1st or 2nd visit (using one fixed symbol)
I No other changes of the tape are allowed

Strongly Limited Automata [P.’15]
I Cells rewritten only while moving to the left
I Only one state is used while moving to the right

Strongly Limited Automata

I Computational power: same as 2-limited automata (CFLs)

I Descriptional power: the sizes of equivalent
CFGs
PDAs
strongly limited automata

are polynomially related (while 2-limited automata can be
exponentially smaller than PDAs)

I CFLs → strongly limited automata:
conversion from CFGs which heavily uses nondeterminism

The class of languages accepted by deterministic strongly
limited automata is a proper subclass of DCFLs.

Strongly Limited Automata

I Computational power: same as 2-limited automata (CFLs)

I Descriptional power: the sizes of equivalent
CFGs
PDAs
strongly limited automata

are polynomially related (while 2-limited automata can be
exponentially smaller than PDAs)

I CFLs → strongly limited automata:
conversion from CFGs which heavily uses nondeterminism

The class of languages accepted by deterministic strongly
limited automata is a proper subclass of DCFLs.

Strongly Limited Automata

I Computational power: same as 2-limited automata (CFLs)

I Descriptional power: the sizes of equivalent
CFGs
PDAs
strongly limited automata

are polynomially related (while 2-limited automata can be
exponentially smaller than PDAs)

I CFLs → strongly limited automata:
conversion from CFGs which heavily uses nondeterminism

The class of languages accepted by deterministic strongly
limited automata is a proper subclass of DCFLs.

Strongly Limited Automata

I Computational power: same as 2-limited automata (CFLs)

I Descriptional power: the sizes of equivalent
CFGs
PDAs
strongly limited automata

are polynomially related (while 2-limited automata can be
exponentially smaller than PDAs)

I CFLs → strongly limited automata:
conversion from CFGs which heavily uses nondeterminism

The class of languages accepted by deterministic strongly
limited automata is a proper subclass of DCFLs.

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active

I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Active Visits and Return Complexity [Wechsung ’75]

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual d-return complexity)
Only the first d visits to a tape cell can be active

d-return complexity (ret-c(d))
Only the last d visits to a tape cell can be active
I ret-c(1): regular languages

I ret-c(d), d ≥ 2: context-free languages [Wechsung ’75]

I det-ret-c(2): not comparable with DCFL [Peckel ’77]
PAL∈ det-ret-c(2) \ DCFL
{anbn+mam | n,m > 0} ∈ DCFL\det-ret-c(2)

Conclusion

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-drive PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-drive PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-drive PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-drive PDAs):
any investigation?

Final Remarks

I 2-limited automata:
interesting machine characterization of CFL

I 1-limited automata:
stimulating open problems in descriptional complexity,
connections with the question of Sakoda and Sipser

I Reversible limited automata:
computational and descriptional power

[Kutrib&Wendlandt ’17]

I Probabilistic limited automata:
Probabilistic extensions [Yamakami ’19]

I Connections with nest word automata (input-drive PDAs):
any investigation?

Thank you for your attention!

	Limited Automata Definition and Computational Power
	Descriptional Complexity of Limited Automata
	Limited Automata and Unary Languages
	Descriptional Complexity 1-Limited Automata vs Finite Automata
	Variants of Limited Automata
	Conclusion
	Thank you for your attention!

