Limited Automata: Properties, Complexity, Variants

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

> DCFS 2019 – Košice, Slovakia July 17, 2019

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Limited automata

Model proposed by Thomas N. Hibbard in 1967 (scan limited automata)

- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

Limited automata

- Model proposed by Thomas N. Hibbard in 1967 (scan limited automata)
- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

Limited automata

- Model proposed by Thomas N. Hibbard in 1967 (scan limited automata)
- One-tape Turing machines with rewriting restrictions
- Variants characterizing regular, context-free, deterministic context-free languages

Outline

An Introductory Example

- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

- Descriptional Complexity (Part II)
 open problems
- Variants and related models
- Conclusion

Outline

- An Introductory Example
- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

- Descriptional Complexity (Part II)
 open problems
- Variants and related models
- Conclusion

Outline

- An Introductory Example
- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

- Descriptional Complexity (Part II)
- Variants and related models
- Conclusion

Outline

- An Introductory Example
- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

- Descriptional Complexity (Part II) ...open problems...
- Variants and related models
- Conclusion

Outline

- An Introductory Example
- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

- Descriptional Complexity (Part II)
 ...open problems...
- Variants and related models
- Conclusion

Outline

- An Introductory Example
- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

- Descriptional Complexity (Part II) ...open problems...
- Variants and related models
- Conclusion

Outline

- An Introductory Example
- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Descriptional Complexity (Part II) ...open problems...
- Variants and related models

Conclusion

Outline

- An Introductory Example
- Definition of Limited Automata
- Computational Power
- Descriptional Complexity (Part I)
- Limited Automata and Unary Languages

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- Descriptional Complexity (Part II) ...open problems...
- Variants and related models
- Conclusion

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

(() (()))

How to recognize if a sequence of brackets is correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$(1 (2)_2 (2 (3)_3)_2)_1$

How to recognize if a sequence of brackets is correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

(() (()))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

(() (())))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

$\longrightarrow \begin{array}{c} (& (&) \\ \end{array}) \quad (& (&) \\ \end{array}) \quad)$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

((× (())))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

((× (())))

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

$$(\times \times (())))$$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$(\times \times (\times \times))$$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

$$(\times \times (\times \times))$$

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

x x x x x x x x

How to recognize if a sequence of brackets its correctly balanced?

 For each opening bracket locate its corresponding closing bracket

Use counters!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

 For each closing bracket locate its corresponding opening bracket

Limited automata!

Limited Automata Definition and Computational Power

(ロ)、(型)、(E)、(E)、 E) のQ(()

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to overwrite the content of each tape cell only in the first d visits

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to overwrite the content of each tape cell only in the first d visits

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Technical details:

- Input surrounded by two end-markers
- End-markers are never overwritten
- The head cannot exceed the end-markers

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

- a one-tape Turing machine
- which is allowed to overwrite the content of each tape cell only in the first d visits

Computational power

- ► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]
- 1-limited automata characterize regular languages
 [Wagner&Wechsung '86]

The Chomsky Hierarchy

(One-tape) Turing Machines	type 0	
Linear Bounded Automata	ty	vpe 1
Pushdown Automata	type 2	
Finite Automata	type 3	

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

The Chomsky Hierarchy

(One-tape) Turing Machines	type 0
Linear Bounded Automata ty	pe 1
d-Limited Automata (any $d \ge 2$) type 2	
Finite Automata type 3	

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

The Chomsky Hierarchy

(One-tape) Turing Machines	type 0
Linear Bounded Automata	type 1
d-Limited Automata (any $d \ge 2$) type	2
1-Limited Automata type 3	

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●
Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

- D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)1, (2,)2, ..., (k,)k}
- $R \subseteq \Omega_k^*$ is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)1, (2,)2, ..., (k,)k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Transducer T for h^{-1}

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

$$\xrightarrow{w} T z \in h^{-1}(w)$$

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)₁, (2,)₂, ..., (k,)_k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Transducer T for
$$h^{-1}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

2-LA AD

$$w \qquad T \qquad z \in h^{-1}(w)$$

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

- D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)1, (2,)2, ..., (k,)k}
- $R \subseteq \Omega_k^*$ is a regular language
- $h: \Omega_k \to \Sigma^*$ is a homomorphism

 $2-LA A_D$ Finite automaton A_R

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Transducer T for h^{-1}

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)₁, (2,)₂, ..., (k,)_k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

• $h: \Omega_k \to \Sigma^*$ is a homomorphism

Finite automaton A_R Transducer T for h^{-1}

2-LA AD

Theorem ([Chomsky&Schützenberger '63])

Each CFL $L \subseteq \Sigma^*$ can be expressed as $L = h(D_k \cap R)$ where:

D_k ⊆ Ω^{*}_k is a Dyck language (i.e., balanced brackets) over Ω_k = {(1,)₁, (2,)₂, ..., (k,)_k}

•
$$R \subseteq \Omega_k^*$$
 is a regular language

•
$$h: \Omega_k \to \Sigma^*$$
 is a homomorphism

Finite automaton A_R

2-LA AD

Suitably simulating this combination of T, A_D and A_R we obtain a 2-LA

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Simulations in [Hibbard '67]: Determinism is preserved by the simulation PDAs by 2-LAs, but not by the converse simulation

 A different simulation of 2-LAs by PDAs, which preserves determinism, is given in [P.&Pisoni '15]

Deterministic 2-Limited Automata \equiv DCFLs

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

- Simulations in [Hibbard '67]: Determinism is preserved by the simulation PDAs by 2-LAs, but not by the converse simulation
- A different simulation of 2-LAs by PDAs, which preserves determinism, is given in [P.&Pisoni '15]

Deterministic 2-Limited Automata \equiv DCFLs

- Simulations in [Hibbard '67]: Determinism is preserved by the simulation PDAs by 2-LAs, but not by the converse simulation
- A different simulation of 2-LAs by PDAs, which preserves determinism, is given in [P.&Pisoni '15]

Deterministic 2-Limited Automata \equiv DCFLs

What about *deterministic d*-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

Infinite hierarchy [Hibbard '67] For each d 2: 2 there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d = 1)-limited automaton

What about *deterministic* d-Limited Automata, d > 2?

- ► $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL
- Infinite hierarchy

[Hibbard '67]

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic d*-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

Infinite hierarchy

[Hibbard '67]

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic d*-Limited Automata, d > 2?

- ▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL
- ► Infinite hierarchy [Hibbard '67] For each d ≥ 2 there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic d*-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

► Infinite hierarchy [Hibbard '67] For each d ≥ 2 there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d − 1)-limited automaton

Claim [Hibbard '67]

For any d > 0, the set of Palindromes cannot be accepted by any *deterministic* d-LA

Hence
$$\bigcup_{d>0} \det det - d - LA \subset CFL$$
 properly

What about *deterministic* d-Limited Automata, d > 2?

▶ $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL

► Infinite hierarchy [Hibbard '67] For each d ≥ 2 there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

Claim [Hibbard '67]

For any d > 0, the set of Palindromes cannot be accepted by any *deterministic* d-LA

Hence
$$\bigcup_{d>0} \det det - d - LA \subset CFL$$
 properly

Open Problem

Any proof?

f(n)-limited automaton $(f : \mathbb{N} \to \mathbb{N})$: one-tape Turing machine s.t. for each accepted input wthere is an accepting computation in which each tape cell is rewritten at most in the first f(|w|) visits

Theorem [Wechsung&Brandstädt '79]

f(n)-LAs \equiv 1AuxPDAs-space(f(n))

i.e., class of languages by one-way PDAs extended with an auxiliary worktape, where O(f(n)) space is used

f(n)-limited automaton $(f : \mathbb{N} \to \mathbb{N})$: one-tape Turing machine s.t. for each accepted input wthere is an accepting computation in which each tape cell is rewritten at most in the first f(|w|) visits

Theorem [Wechsung&Brandstädt '79]

f(n)-LAs \equiv 1AuxPDAs-space(f(n))

i.e., class of languages by one-way PDAs extended with an auxiliary worktape, where O(f(n)) space is used

Descriptional Complexity of Limited Automata

・ロト・日本・ヨト・ヨト・日・ つへぐ

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Example (n = 3):

0010101100101010111110

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Example (n = 3): 0 0 1 |0 1 0 |1 1 0 |0 1 0 |1 0 0 |1 1 1 |1 1 0

$$> 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 \triangleleft$$
 (n = 3)

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of *n* symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

$$\triangleright 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 1 1 0 \triangleleft \qquad (n=3)$$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

$$\triangleright 0 0 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1 \hat{1} \hat{1} \hat{0} \triangleleft \qquad (n=3)$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

$$\triangleright 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1 1 1 \hat{1} \hat{1} \hat{0} \triangleleft \qquad (n=3)$$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

 $\triangleright 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 0 x x x \hat{1} \hat{1} \hat{0} \triangleleft \qquad (n=3)$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

 $> 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ x \ x \ x \ x \ x \ 1 \ \hat{1} \ \hat{0} \ \triangleleft \qquad (n=3)$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

 $> 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ x \ x \ x \ x \ x \ x \ x \ 1 \ \hat{1} \ \hat{0} \ \triangleleft \qquad (n=3)$

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

- Scan all the tape from left to right and check if the input length is a multiple of n
- 2. Move to the left and mark the rightmost block of n symbols
- 3. Compare the other blocks of length *n* (from the right), symbol by symbol, with the last block
- 4. When the matching block is found, accept

Complexity:

- O(n) states
- Fixed working alphabet

 \Rightarrow det-2-LA of size O(n)

$$> 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 0 \triangleleft$$
 (n = 3)

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of *n*,
 - the last marked cell is the leftmost one of the last block, and

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that starts from the marked cells
- 4. Accept if the two blocks are equal

 $> 0 0 1 0 1 0 \hat{1} 1 0 0 1 0 1 0 1 0 1 1 \hat{1} 1 0 \triangleleft \qquad (n = 3)$

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and

- the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that starts from the marked cells
- 4. Accept if the two blocks are equal

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and

- the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that starts from the marked cells
- 4. Accept if the two blocks are equal

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and

- the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that starts from the marked cells
- 4. Accept if the two blocks are equal
A Nondeterministic 1-Limited Automaton for B_n

- 1. Scan all the tape from left to right and mark two nondeterministically chosen cells
- 2. Check that:
 - the input length is a multiple of n,
 - the last marked cell is the leftmost one of the last block, and
 - the other marked cell is the leftmost one of another block
- 3. Compare symbol by symbol the two blocks that starts from the marked cells
- 4. Accept if the two blocks are equal

Complexity:

- O(n) states
- Fixed working alphabet

 \Rightarrow 1-LA of size O(n)

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1\text{-LA}s \rightarrow 1\text{DFA}s$

At least double exponential gap!

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへの

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1\text{-LA}s \rightarrow 1\text{DFA}s$

At least double exponential gap!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1-LAs \rightarrow 1DFAs$

At least double exponential gap!

CFGs and PDAs

Each CFG generating B_n (PDA recognizing B_n) has size at least *exponential* in n

Proof: "interchange" lemma for CFLs

 $det-2-LAs \rightarrow PDAs$

At least exponential gap!

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ つ へ つ

$$B_n = \{x_1 \, x_2 \cdots x_k \, x \in \{0, 1\}^* \quad | \quad |x_1| = \cdots = |x_k| = |x| = n, \ k > 0,$$

and $x_j = x$, for some $1 \le j \le k$

Finite automata

Each 1DFA accepting B_n requires a number of states at least *double exponential* in n

Proof: standard distinguishability arguments

 $1-LAs \rightarrow 1DFAs$

At least double exponential gap!

CFGs and PDAs

Each CFG generating B_n (PDA recognizing B_n) has size at least *exponential* in n

Proof: "interchange" lemma for CFLs

 $\mathsf{det}\text{-}\mathsf{2}\text{-}\mathsf{LA}s \to \mathsf{PDA}s$

At least exponential gap!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Size Costs of Simulations d-LAs versus PDAs (or CFGs), $d \ge 2$

▶ 2-LAs \rightarrow PDAs d-LAs \rightarrow PDAs, d > 2 exponential

[P.&Pisoni '15] [Kutrib&P.&Wendlandt '18]

 ▶ det-2-LAs → DPDAs [P.&Pisoni '15] double exponential upper bound (optimal?) exponential if the input for the simulating DPDA is end-marked

▶ PDAs
$$\rightarrow$$
 2-LAs,
DPDAs \rightarrow det-2-LAs
polynomial

[P.&Pisoni '15]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Size Costs of Simulations d-LAs versus PDAs (or CFGs), $d \ge 2$

▶ 2-LAs \rightarrow PDAs d-LAs \rightarrow PDAs, d > 2 exponential

[P.&Pisoni '15] [Kutrib&P.&Wendlandt '18]

 det-2-LAs → DPDAs [P.&Pisoni '15] double exponential upper bound (optimal?) exponential if the input for the simulating DPDA is end-marked

▶ PDAs
$$\rightarrow$$
 2-LAs,
DPDAs \rightarrow det-2-LA

P.&Pisoni '15]

Size Costs of Simulations d-LAs versus PDAs (or CFGs), $d \ge 2$

- 2-LAs → PDAs [P.&Pisoni '15] d-LAs → PDAs, d > 2 [Kutrib&P.&Wendlandt '18] exponential
- ▶ det-2-LAs → DPDAs [P.&Pisoni '15] double exponential upper bound (optimal?) exponential if the input for the simulating DPDA is end-marked
- ▶ $PDAs \rightarrow 2-LAs$, DPDAs $\rightarrow det-2-LAs$ polynomial

[P.&Pisoni '15]

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

• $1-LAs \rightarrow 1NFA$ exponential

• $1-LAs \rightarrow 1DFA$ double exponential • det-1-LAs \rightarrow 1DFA exponential

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

• $1-LAs \rightarrow 1NFA$ exponential

• $1-LAs \rightarrow 1DFA$ double exponential • det-1-LAs \rightarrow 1DFA exponential

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

• $1-LAs \rightarrow 1NFA$ exponential

• $1-LAs \rightarrow 1DFA$ double exponential • det-1-LAs \rightarrow 1DFA exponential

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

▶ 1-LA $s \rightarrow 1$ NFA exponential

 1-LAs → 1DFA double exponential • det-1-LAs \rightarrow 1DFA exponential

Double role of nondeterminism in 1-LAs On a tape cell: *First visit:* To overwrite the content by a nondeterministically chosen symbol σ *Next visits:* To select a transition

the set of available transitions depends on $\sigma!$

1-LAs versus Finite Automata

[Wagner&Wechsung '86, P.&Pisoni '14]

▶ 1-LA $s \rightarrow 1$ NFA exponential

• $1-LAs \rightarrow 1DFA$ double exponential • det-1-LAs \rightarrow 1DFA exponential

Double role of nondeterminism in 1-LAs On a tape cell: First visit: To overwrite the content by a nondeterministically chosen symbol σ Next visits: To select a transition the set of available transitions depends on σ ! Descriptional Complexity - TO BE CONTINUED...

Limited Automata and Unary Languages

Limited Automata and Unary Languages

- Preliminary observations in [P.&Pisoni '14]
- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Improvements in [P.&Prigioniero '19]:

- Preliminary observations in [P.&Pisoni '14]
- Several results in [Kutrib&Wendlandt '15] (including superpolynomial gaps 1-LAs → finite automata)

- Improvements in [P.&Prigioniero '19]:
 - Languages $L_n = \{a^{2^n}\}$ and $U_n = \{a^{2^n}\}^*$
 - Recognition by "small" deterministic 1-LAs
 - Exponential gaps

Idea: "divide" *n* times the input length by 2

\triangleright	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	
------------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Idea: "divide" *n* times the input length by 2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Make n sweeps of the tape

Idea: "divide" *n* times the input length by 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Make n sweeps of the tape

Idea: "divide" n times the input length by 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Make n sweeps of the tape

Idea: "divide" n times the input length by 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Make n sweeps of the tape

Idea: "divide" *n* times the input length by 2

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a
- Accept if only exactly one a is left on the tape

Idea: "divide" *n* times the input length by 2

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a
- Accept if only exactly one a is left on the tape
- O(n) states

Idea: "divide" *n* times the input length by 2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Possible variation:

Idea: "divide" *n* times the input length by 2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Possible variation:

Idea: "divide" *n* times the input length by 2

Possible variation:

Idea: "divide" *n* times the input length by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ a} \triangleleft \boxed{1 \ 0 \ 2 \ 0 \ 1 \ 0 \ a} \triangleleft$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Possible variation:

Idea: "divide" *n* times the input length by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ a} \lhd$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Possible variation:

Idea: "divide" *n* times the input length by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Possible variation:

Idea: "divide" *n* times the input length by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

Possible variation:

 Overwrite using the number of current sweep (counting from 0)

We can build a 1-LA that, for each tape cell, guesses the number of the sweep in which this linear bounded automaton rewrites the cell

► 1st sweep:

For each cell, guess and write a symbol in $\{0, 1, \ldots, n\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

1st sweep:

For each cell, guess and write a symbol in $\{0, 1, \ldots, n\}$

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

Ist sweep: For each cell, guess and write a symbol in {0,1,...,n}

 (i+2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

1st sweep: For each cell, guess and write a symbol in {0,1,...,n}
(i+2)th sweep, i = 0,...,n:

Verify that the symbol *i* occurs in all odd positions, where positions are counted ignoring cells containing j < i

Ist sweep: For each cell, guess and write a symbol in {0, 1, ..., n}
(i+2)th sweep, i = 0, ..., n: Verify that the symbol i occurs in all odd positions,

where positions are counted ignoring cells containing j < i
1st sweep: For each cell, guess and write a symbol in {0,1,...,n}
(i+2)th sweep, i = 0,...,n: Verify that the symbol i occurs in all odd positions,

where positions are counted ignoring cells containing j < i

$$\triangleright 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 \triangleleft$$

$$n = 4$$

1st sweep: For each cell, guess and write a symbol in {0,1,...,n}
(i+2)th sweep, i = 0,...,n: Verify that the symbol i occurs in all odd positions,

where positions are counted ignoring cells containing j < i

$$> 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 < n = 4$$

1st sweep: For each cell, guess and write a symbol in {0,1,..., n}
(i+2)th sweep, i = 0,..., n:

Verify that the symbol *i* occurs in all odd positions, where positions are counted ignoring cells containing j < i

$$> 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 < n = 4$$

- Ist sweep: For each cell, guess and write a symbol in {0, 1, ..., n}
- (i + 2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

Size O(n)

$$> 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 < n = 4$$

Ist sweep: For each cell, guess and write a symbol in {0, 1, ..., n}

 (i + 2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

Size
$$O(n)$$

We can do better!

Size O(n), only *deterministic* transitions

The String on The Tape

 $0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Prefix of the infinite sequence produced as follows:

Prefix of the infinite sequence produced as follows:

First element: 0

```
    Next elements: w → ww'
    w part already constructed,
    w' copy of w, where the last symbol replaced by its successor
```

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

0

Prefix of the infinite sequence produced as follows:

First element: 0

▶ Next elements: $w \rightarrow ww'$

w part already constructed,

• w' copy of w, where the last symbol replaced by its successor

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

0 1

Prefix of the infinite sequence produced as follows:

First element: 0

▶ Next elements: $w \rightarrow ww'$

w part already constructed,

• w' copy of w, where the last symbol replaced by its successor

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

0 1 0 2

Prefix of the infinite sequence produced as follows:

- First element: 0
- ▶ Next elements: $w \rightarrow ww'$

w part already constructed,

• w' copy of w, where the last symbol replaced by its successor

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

0 1 0 2 0 1 0 3

Prefix of the infinite sequence produced as follows:

- First element: 0
- Next elements: w → ww'
 w part already constructed,
 w' copy of w, where the last symbol replaced by its successor
 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

Prefix of the infinite sequence produced as follows:

- First element: 0
- Next elements: w → ww'
 w part already constructed,
 w' copy of w, where the last symbol replaced by its successor
 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4
 Binary Carry Sequence

The Binary Carry Sequence: Definition

$0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4 \ \cdots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The Binary Carry Sequence: Definition

Infinite sequence of integers $\sigma_1, \sigma_2, \ldots$ with:

 $\sigma_j :=$ exponent of the *highest power of* 2 which divides *j*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\blacktriangleright w_j := \sigma_1 \sigma_2 \cdots \sigma_j$

i.e., prefix of length j of the binary carry sequence

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

 $\blacktriangleright w_j := \sigma_1 \sigma_2 \cdots \sigma_j$

i.e., prefix of length j of the binary carry sequence

BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with a greedy method by inspecting w_j from the end

 $\blacktriangleright w_j := \sigma_1 \sigma_2 \cdots \sigma_j$

i.e., prefix of length j of the binary carry sequence

BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with a greedy method by inspecting w_j from the end

 $BIS(w_{11})^R = \dots 0$

 $\blacktriangleright w_j := \sigma_1 \sigma_2 \cdots \sigma_j$

i.e., prefix of length j of the binary carry sequence

BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with a greedy method by inspecting w_j from the end

 $BIS(w_{11})^R = \dots 1 0$

 $\blacktriangleright w_j := \sigma_1 \sigma_2 \cdots \sigma_j$

i.e., prefix of length j of the binary carry sequence

BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with a greedy method by inspecting w_j from the end

 $BIS(w_{11})^R = 3 \quad 1 \quad 0$

 $\blacktriangleright w_j := \sigma_1 \sigma_2 \cdots \sigma_j$

i.e., prefix of length j of the binary carry sequence

BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with a greedy method by inspecting w_j from the end

 $BIS(w_{11})^R = 3 \quad 1 \quad 0$

 $11 = 2^3 + 2^1 + 2^0$

 $= (1011)_2$

 $\blacktriangleright w_j := \sigma_1 \sigma_2 \cdots \sigma_j$

i.e., prefix of length j of the binary carry sequence

BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with a greedy method by inspecting w_j from the end

 $BIS(w_{11})^R = 3 \quad 1 \quad 0$

 $11 = 2^3 + 2^1 + 2^0$

 $= (1011)_2$

Property 1

 $BIS(w_j) =$ positions of 1s in the binary representation of j

$$w_{11} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0$$

 $BIS(w_{11})^R = 3 \quad 1 \quad 0$

 $11 = 2^3 + 2^1 + 2^0 = (1011)_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$$

 $BIS(w_{11})^R = 3 \quad 1 \quad 0$

$$11 = 2^3 + 2^1 + 2^0 = (1011)_2$$

 $12 = 2^3 + 2^2 = (1100)_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$$

 $BIS(w_{11})^R = 3 \quad 1 \quad 0$

$$11 = 2^3 + 2^1 + 2^0 = (1011)_2$$

 $12 = 2^3 + 2^2 = (1100)_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $BIS(w_{12})^R = 3$ 2

$$w_{11} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0$$
$$BIS(w_{11})^R = 3 \quad 1 \quad 0$$
$$11 = 2^3 + 2^1 + 2^0 = (1011)_2$$
$$12 = 2^3 + 2^2 = (1100)_2$$
$$BIS(w_{12})^R = 3 \quad 2$$
$$w_{12} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0 \quad 2$$

(ロ)、

$$w_{11} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0$$
$$BIS(w_{11})^R = 3 \quad 1 \quad 0$$
$$11 = 2^3 + 2^1 + 2^0 = (1011)_2$$
$$12 = 2^3 + 2^2 = (1100)_2$$
$$BIS(w_{12})^R = 3 \quad 2$$

 $w_{12} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2$

Property 2

The symbol of the binary carry sequence in position j + 1 is the smallest nonnegative integer that does not occur in $BIS(w_j)$

Idea: Write on the tape a prefix of the binary carry sequence

n = 4

Idea: Write on the tape a prefix of the binary carry sequence

\triangleright	0	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	\triangleleft

n=4

0 is written on the first cell

Idea: Write on the tape a prefix of the binary carry sequence

n - 1

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write *i*

Idea: Write on the tape a prefix of the binary carry sequence

л

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

0 is written on the first cell

Idea: Write on the tape a prefix of the binary carry sequence

л

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

0 is written on the first cell

Idea: Write on the tape a prefix of the binary carry sequence

Λ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

0 is written on the first cell

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

Idea: Write on the tape a prefix of the binary carry sequence

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ a \ a \ a \ a \ a \ a} \triangleleft$$

n - 1

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

0 is written on the first cell

Idea: Write on the tape a prefix of the binary carry sequence

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ a \ a \ a \ a \ a \ a} \triangleleft$$

n - 1

0 is written on the first cell

Idea: Write on the tape a prefix of the binary carry sequence

Λ

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write i
Idea: Write on the tape a prefix of the binary carry sequence

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a

Write i

Idea: Write on the tape a prefix of the binary carry sequence

. . .

n=4

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write i

Idea: Write on the tape a prefix of the binary carry sequence

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a

Write i

Idea: Write on the tape a prefix of the binary carry sequence

. . .

n-A

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write i

Idea: Write on the tape a prefix of the binary carry sequence

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a

Write i

Idea: Write on the tape a prefix of the binary carry sequence

л

. . .

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write i

Idea: Write on the tape a prefix of the binary carry sequence

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a

Write i

Idea: Write on the tape a prefix of the binary carry sequence

л

. . .

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write i

Idea: Write on the tape a prefix of the binary carry sequence

$$n = 4$$

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \triangleleft$$

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write i
- ▶ When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape a prefix of the binary carry sequence

n=4

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Move to the left to compute the smallest $i \notin BIS(w_j)$
 - Move to the right to search the first cell containing a
 - Write i
- ▶ When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape a prefix of the binary carry sequence

- Tape alphabet $\{0, \ldots, n\}$
- ▶ Finite state control with *O*(*n*) states
- ▶ Total size of the description O(n)
- With a minor modification we can obtain a deterministic 1-LA of size O(n) accepting U_n = {a²ⁿ}*

Idea: Write on the tape a prefix of the binary carry sequence

- Tape alphabet $\{0, \ldots, n\}$
- ▶ Finite state control with *O*(*n*) states
- ▶ Total size of the description O(n)
- With a minor modification we can obtain a deterministic 1-LA of size O(n) accepting U_n = {a²ⁿ}*

Idea: Write on the tape a prefix of the binary carry sequence

- ► Tape alphabet {0,..., n}
- ▶ Finite state control with *O*(*n*) states
- ▶ Total size of the description O(n)
- With a minor modification we can obtain a deterministic 1-LA of size O(n) accepting U_n = {a^{2ⁿ}}*

Idea: Write on the tape a prefix of the binary carry sequence

- ► Tape alphabet {0,..., n}
- ▶ Finite state control with *O*(*n*) states
- Total size of the description O(n)
- With a minor modification we can obtain a deterministic 1-LA of size O(n) accepting U_n = {a^{2ⁿ}}*

Idea: Write on the tape a prefix of the binary carry sequence

- ► Tape alphabet {0,..., n}
- Finite state control with O(n) states
- Total size of the description O(n)
- With a minor modification we can obtain a deterministic 1-LA of size O(n) accepting U_n = {a^{2ⁿ}}*

Idea: Write on the tape a prefix of the binary carry sequence

$$n = 4$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ► Tape alphabet {0,..., n}
- Finite state control with O(n) states
- Total size of the description O(n)
- With a minor modification we can obtain a deterministic 1-LA of size O(n) accepting U_n = {a^{2ⁿ}}*
- Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

Idea: Write on the tape a prefix of the binary carry sequence

$$n = 4$$

det-1-LAs \rightarrow 2NFAs

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト ● のへで

Exponential gap!

- ► Tape alphabet {0,..., n}
- ▶ Finite state control with *O*(*n*) states
- Total size of the description O(n)
- With a minor modification we can obtain a deterministic 1-LA of size O(n) accepting U_n = {a^{2ⁿ}}*
- Each 2NFA accepting U_n should have at least 2ⁿ states [Mereghetti&P.'00]

Descriptional Complexity 1-Limited Automata vs Finite Automata

1-LA

1NFA

1DFA

det-1-LA

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ○ ○ ○

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From det-1-LA \rightarrow 2DFA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣��

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Variants of Limited Automata

Chomsky-Schützenberger Theorem:

Recognition of CFLs "reduced" to recognition of Dyck languages

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Dyck languages are accepted without fully using capabilities of 2-limited automata

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで
Dyck languages are accepted without fully using capabilities of 2-limited automata, e.g.,

- Moving to the right: only state q₀ is used, rewritings only when the head direction is reversed
- Moving to the left: no state change until the head direction is reversed

Only one symbol used for rewriting

Question

Is it possible to restrict 2-limited automata without affecting their computational power?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Question

Is it possible to restrict 2-limited automata without affecting their computational power?

Forgetting Automata [Jancar&Mráz&Plátek '96]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

YES!

- The content of any cell can be erased in the 1st or 2nd visit (using one fixed symbol)
- No other changes of the tape are allowed

Question

Is it possible to restrict 2-limited automata without affecting their computational power?

Forgetting Automata [Jancar&Mráz&Plátek '96]

- The content of any cell can be erased in the 1st or 2nd visit (using one fixed symbol)
 - No other changes of the tape are allowed

Strongly Limited Automata

[P.'15]

- Cells rewritten only while moving to the left
- Only one state is used while moving to the right

YES!

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs
 - strongly limited automata
 - are polynomially related (while 2-limited automata can be exponentially smaller than PDAs)
- ► CFLs → strongly limited automata: conversion from CFGs which heavily uses nondeterminism
 - The class of languages accepted by deterministic strongly limited automata is a proper subclass of DCFLs.

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs
 - strongly limited automata

are polynomially related (while 2-limited automata can be exponentially smaller than PDAs)

 CFLs → strongly limited automata: conversion from CFGs which heavily uses nondeterminism
The class of languages accepted by *deterministic* strongly limited automata is a proper subclass of DCELs.

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs
 - strongly limited automata

are polynomially related (while 2-limited automata can be exponentially smaller than PDAs)

► CFLs → strongly limited automata: conversion from CFGs which heavily uses nondeterminism

The class of languages accepted by deterministic strongly limited automata is a proper subclass of DCFLs.

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs
 - strongly limited automata

are polynomially related (while 2-limited automata can be exponentially smaller than PDAs)

• CFLs \rightarrow strongly limited automata:

conversion from CFGs which heavily uses nondeterminism

 The class of languages accepted by *deterministic* strongly limited automata is a *proper* subclass of DCFLs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Active visit to a tape cell: any visit overwriting the content

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d)) Only *the last d visits* to a tape cell can be active Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d))

Only the last d visits to a tape cell can be active

- ret-c(1): regular languages
- ret-c(d), $d \ge 2$: context-free languages
- det-ret-c(2): not comparable with DCFL
 - $PAL \in det-ret-c(2) \setminus DCFL$

[Wechsung '75 [Peckel '77

• $\{a^n b^{n+m} a^m \mid n, m > 0\} \in \mathsf{DCFL}\det\operatorname{-ret-c}(2)$

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d))

Only the last d visits to a tape cell can be active

- ret-c(1): regular languages
- ret-c(d), $d \ge 2$: context-free languages

[Wechsung '75]

- det-ret-c(2): not comparable with DCFL
 - $PAL \in det-ret-c(2) \setminus DCFL$
 - $\{a^n b^{n+m} a^m \mid n, m > 0\} \in \mathsf{DCFL} \setminus \mathsf{det}\operatorname{-ret-c}(2)$

Active visit to a tape cell: any visit overwriting the content

d-limited automata (dual *d*-return complexity) Only *the first d visits* to a tape cell can be active

d-return complexity (ret-c(d))

Only the last d visits to a tape cell can be active

- ret-c(1): regular languages
- ▶ ret-c(d), $d \ge 2$: context-free languages [Wechsung '75]
- det-ret-c(2): not comparable with DCFL
 - $PAL \in det-ret-c(2) \setminus DCFL$
 - $\{a^n b^{n+m} a^m \mid n, m > 0\} \in \mathsf{DCFL} \setminus \mathsf{det}\operatorname{-ret-c}(2)$

[Peckel '77]

Conclusion

2-limited automata: interesting machine characterization of CFL

1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser

 Reversible limited automata: computational and descriptional power

[Kutrib&Wendlandt '17]

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

[Kutrib&Wendlandt '17]

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

 Probabilistic limited automata: Probabilistic extensions

[Yamakami '19]

[[]Kutrib&Wendlandt '17]

- 2-limited automata: interesting machine characterization of CFL
- 1-limited automata: stimulating open problems in descriptional complexity, connections with the question of Sakoda and Sipser
- Reversible limited automata: computational and descriptional power

[Kutrib&Wendlandt '17]

- Probabilistic limited automata: Probabilistic extensions [Yamakami '19]
- Connections with nest word automata (input-drive PDAs): any investigation?

Thank you for your attention!