Limited Automata and Unary Languages

Giovanni Pighizzini and Luca Prigioniero

Dipartimento di Informatica Università degli Studi di Milano, Italy

> DLT 2017 – Liège August 7-11, 2017

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- ► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]
- 1-limited automata characterize regular languages [Wagner&Wechsung '86]

Example: 2-LA for the Dyck Language over $\{[], ()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

$\triangleright \ \boxed{[] } \ \boxed{[((()))] } \triangleleft$

Each cell is rewritten only in the first 2 visits!

Descriptional Complexity: Limited Automata vs PDAs

▶ *d* = 2 [P.&Pisoni '15]

 $2\text{-LAs} \rightarrow \text{PDAs}$

Exponential gap

 $\mathsf{PDAs} \to 2\text{-}\mathsf{LAs}$

Polynomial upper bound

► d > 2 [Kutrib&P.&Wendlandt to app.]

d-LAs \rightarrow PDAs Still exponential!

Descriptional Complexity: Limited vs Finite Automata

▶ *d* = 1 [P.&Pisoni '14]

<i>n</i> -state 1-LAs $ ightarrow$ finite automata		
	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

The gaps are optimal! (binary witness)

What about the unary case?

Theorem ([P.&Pisoni '14])

For n prime, the language $\{a^{n^2}\}^*$:

- is accepted by a 1-LA with n + 1 states and a constant size tape alphabet
- requires n² many states to be accepted be a 2NFA

 \Rightarrow Quadratic lower bound for the simulation of unary 1-LAs by finite automata

Theorem ([Kutrib&Wendlandt '15])

For n prime, the language $\{a^{n \cdot F(n)}\}$:

► is accepted by a 1-LA with 4n states and a tape alphabet with n + 1 symbols

• requires $n \cdot F(n)$ many states to be accepted be a 2NFA where $F(n) = e^{\sqrt{n \cdot \ln(n)}(1+o(1))}$ (Landau function)

\Rightarrow Superpolynomial lower bound for the simulation of unary 1-LAs by finite automata

This paper: Exponential lower bound

The Unary Case, d > 1

• d-LA \equiv CFLs (d > 1)

► Each unary CFL is regular ⇒ unary d-LA ≡ unary REG [Ginsburg&Rice '62]

Theorem ([P.&Pisoni '15])

For n > 0, the language $\{a^{2^n}\}^*$:

- is accepted by a deterministic 2-LA of size O(n)
- requires 2ⁿ many states to be accepted by a 2NFA
- \Rightarrow Exponential lower bound for the simulation of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs

Unary 1-LA vs Finite Automata The Exponential Separation

- Fixed n > 0: $L_n = \{a^{2^n}\}$
- The smallest NFA accepting L_n has $2^n + 1$ many states
- ► We show the existence of a *deterministic* 1-LA of O(n) size accepting L_n

A Linear Bounded Automaton for $L_n = \{a^{2^n}\}$

Idea: "divide" the input *n* times by 2

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a
- Accept if only one a is left on the tape
- O(n) states

A Linear Bounded Automaton for $L_n = \{a^{2^n}\}$

Idea: "divide" the input *n* times by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

Possible variation:

Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell, guesses the number of the sweep in which this linear bounded automaton rewrites the cell A 1-Limited Automaton for $L_n = \{a^{2^n}\}$

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

- 1st sweep:
 For each cell, guess and write a symbol in {0, 1, ..., n}
- (i + 2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i
- ► Size O(n)

We can do better!

Size O(n), only deterministic transitions

The string written by the above linear bounded automaton is a prefix of the *binary carry sequence*:

- First two elements: 0 1
- Next elements: $w \rightarrow ww'$
 - w part already constructed,
 - w' copy of w, with the last symbol replaced by its successor

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

The Binary Carry Sequence: Properties

- w_j := prefix of length j of the binary carry sequence
- BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with the greedy method by inspecting w_j from the end

 $w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$

 $BIS(w_{11}) = 0 \quad 1 \quad 3$

 $11 = 2^0 + 2^1 + 2^3$

Property 1

 $BIS(w_j) = \text{positions of 1s in}$ the binary representation of j

The Binary Carry Sequence: Properties

$$w_{11} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0$$

$$BIS(w_{11}) = 0 \quad 1 \quad 3$$

$$11 = 2^{0} + 2^{1} + 2^{3}$$

$$12 = 2^{2} + 2^{3}$$

$$BIS(w_{12}) = 2 \quad 3$$

$$w_{12} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0 \quad 2$$

Property 2

The symbol of the binary carry sequence in position j + 1 is the smallest nonnegative integer that does not occur in $BIS(w_j)$

A Deterministic 1-LA for $L_n = \{a^{2^n}\}$

Idea: Write on the tape prefixes of the binary carry sequence

n - 1

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
 - Move to the right to search the first cell containing a
 - Write i on that cell
- When n is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

Idea: Write on the tape prefixes of the binary carry sequence

- Each cell is rewritten only in the first visit
- ► Tape alphabet {0,..., n}
- ▶ Finite state control with *O*(*n*) states
- Total size of the description O(n)

 $\begin{array}{l} \mathsf{det}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs}/\mathsf{DFAs} \\ \mathsf{ndet}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs} \end{array}$

- Exponential gap
- I.b. our result

u.b. general case

The gap does not change in the conversion into two-way automata

$\mathsf{ndet}\text{-}\mathsf{1}\text{-}\mathsf{LAs}\to\mathsf{DFAs}$

l.b. exp (our result)u.b. exp exp (general case)*Problem*Can we reduce the distance between l.b. and u.b.?

An exponential reduction is not always achievable:

Theorem

There is a constant c s.t. for each sufficiently large n there is a unary n-state DFA s.t. all equivalent d-LAs have descriptions of size $> c \cdot n^{1/2}$, for each d > 0

Unary CFGs vs Limited Automata

Theorem ([Ginsburg&Rice '62])

Each unary context-free language is regular

Theorem ([P.&Shallit&Wang'02])

Each unary context-free grammar can be converted into equivalent DFAs/NFAs of exponential size. These costs cannot be reduced

Problem

Study the size relationships between unary CFGs and limited automata

[This work]

The conversion unary CFGs \rightarrow 1-LAs is polynomial in size

A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language \widehat{D}_{Ω}

- Balanced brackets padded with neutral symbols
- Ex. $\Omega = \{(,), [,], |\}$, strings ||(|), (([|]|)[]||)|()[]|, ...

Theorem ([Okhotin '12])

 $L \subseteq \Sigma^*$ is context-free iff $L = h(\widehat{D}_{\Omega} \cap R)$, where

- Ω is an extended bracket alphabet
- $R \subseteq \Omega^*$ is regular
- $h: \Omega \to \Sigma$ is a letter-to-letter homomorphism

Remarks

- The size of Ω is *polynomial* wrt the size of a given CFG G specifying L
- ► The language *R* is *local*
- Strings in $\widehat{D}_{\Omega} \cap R$ encode derivation trees of G

Chomsky-Schützenberger Theorem in the Unary Case

- $G = (V, \{a\}, P, S)$ unary CFG generating L(G)
- ► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

 $L(G) = h(\widehat{D}_{\Omega_G}^{(\#V)} \cap R)$

The "restricted extended" Dyck Language $\widehat{D}_{\Omega_G}^{(\#V)} \subset \widehat{D}_{\Omega_G}$

Then

- \blacktriangleright contains only the strings with bracket nesting depth $\leq \#V$
- ▶ is recognized by a 2DFA of size polynomial wrt the size of G

A 1-LA Accepting $L(G) = h(\widehat{D}_{\Omega_G}^{(\#V)} \cap R)$

- 1. Input a^m
- 2. Guess $w \in h^{-1}(a^m)$
 - Scan the tape from left to right
 - Rewrite each input cell with a symbol from Ω_G

3. Check if
$$w \in \widehat{D}_{\Omega_G}^{(\#V)}$$

2DFA of polynomial size

- 4. Check if $w \in R$
 - DFA of polynomial size

Summing up:

- Each cell is rewritten only in the first visit
- ► The total size of the resulting 1-LA is polynomial

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

- ► Cost of the converse conversion, i.e., (unary) 1-LAs → CFGs General alphabets: 2-LAs → CFGs is *exponential* in size
- Conversion of unary CFGs into *deterministic* limited automata

Thank you for your attention!