Limited Automata and Unary Languages

Giovanni Pighizzini and Luca Prigioniero

Dipartimento di Informatica Università degli Studi di Milano, Italy

> DLT 2017 – Liège August 7-11, 2017

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to rewrite the content of each tape cell only in the first d visits

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

うして ふゆう ふほう ふほう うらつ

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Each cell is rewritten only in the first 2 visits!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to rewrite the content of each tape cell only in the first d visits

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- ► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]
- 1-limited automata characterize regular languages [Wagner&Wechsung '86]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▶ *d* = 2 [P.&Pisoni '15]

 $\text{2-LAs} \to \text{PDAs}$

Exponential gap

▶ *d* = 2 [P.&Pisoni '15]

 $\text{2-LAs} \to \text{PDAs}$

Exponential gap

 $\mathsf{PDAs} \to 2\text{-LAs}$

Polynomial upper bound

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

▶ *d* = 2 [P.&Pisoni '15]

 $\text{2-LAs} \to \text{PDAs}$

Exponential gap

 $\mathsf{PDAs} \to 2\text{-LAs}$

Polynomial upper bound

▶ d > 2 [Kutrib&P.&Wendlandt to app.]

d-LAs \rightarrow PDAs Still exponential!

▶ *d* = 1 [P.&Pisoni '14]

<i>n</i> -state 1-LAs $ ightarrow$ finite automata		
	DFA	NFA
nondet. 1-LA		
det. 1-LA		

▶ The gaps are optimal! (binary witness)

What about the unary case?

▶ *d* = 1 [P.&Pisoni '14]

<i>n</i> -state 1-LAs $ ightarrow$ finite automata		
	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	
det. 1-LA		

▶ The gaps are optimal! (binary witness)

What about the unary case?

▶ *d* = 1 [P.&Pisoni '14]

<i>n</i> -state 1-LAs \rightarrow finite automata		
	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA		

▶ The gaps are optimal! (binary witness)

What about the unary case?

▶ *d* = 1 [P.&Pisoni '14]

<i>n</i> -state 1-LAs \rightarrow finite automata		
	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

▶ The gaps are optimal! (binary witness)

What about the unary case?

▶ *d* = 1 [P.&Pisoni '14]

<i>n</i> -state 1-LAs $ ightarrow$ finite automata		
	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

The gaps are optimal! (binary witness)

What about the unary case?

▶ *d* = 1 [P.&Pisoni '14]

<i>n</i> -state 1-LAs $ ightarrow$ finite automata		
	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

The gaps are optimal! (binary witness)

What about the unary case?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem ([P.&Pisoni '14])

For n prime, the language $\{a^{n^2}\}^*$:

 is accepted by a 1-LA with n + 1 states and a constant size tape alphabet

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

requires n² many states to be accepted be a 2NFA

 \Rightarrow Quadratic lower bound for the simulation of unary 1-LAs by finite automata

Theorem ([Kutrib&Wendlandt '15])

For n prime, the language $\{a^{n \cdot F(n)}\}$:

 is accepted by a 1-LA with 4n states and a tape alphabet with n + 1 symbols

うして ふゆう ふほう ふほう うらつ

► requires $n \cdot F(n)$ many states to be accepted be a 2NFA where $F(n) = e^{\sqrt{n \cdot \ln(n)}(1+o(1))}$ (Landau function)

 \Rightarrow Superpolynomial lower bound for the simulation of unary 1-LAs by finite automata

Theorem ([Kutrib&Wendlandt '15])

For n prime, the language $\{a^{n \cdot F(n)}\}$:

 is accepted by a 1-LA with 4n states and a tape alphabet with n + 1 symbols

ション ふゆ く 山 マ チャット しょうくしゃ

• requires $n \cdot F(n)$ many states to be accepted be a 2NFA where $F(n) = e^{\sqrt{n \cdot \ln(n)}(1+o(1))}$ (Landau function)

\Rightarrow Superpolynomial lower bound for the simulation of unary 1-LAs by finite automata

This paper: Exponential lower bound

The Unary Case, d > 1

- d-LA \equiv CFLs (d > 1)
- Each unary CFL is regular
- \Rightarrow unary *d*-LA \equiv unary REG

[Ginsburg&Rice '62]

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The Unary Case, d > 1

• d-LA \equiv CFLs (d > 1)

► Each unary CFL is regular ⇒ unary d-LA ≡ unary REG [Ginsburg&Rice '62]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Theorem ([P.&Pisoni '15])

For n > 0, the language $\{a^{2^n}\}^*$:

- is accepted by a deterministic 2-LA of size O(n)
- requires 2ⁿ many states to be accepted by a 2NFA
- \Rightarrow Exponential lower bound for the simulation of unary 2-LAs by finite automata

The Unary Case, d > 1

• d-LA \equiv CFLs (d > 1)

► Each unary CFL is regular ⇒ unary d-LA ≡ unary REG [Ginsburg&Rice '62]

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem ([P.&Pisoni '15])

For n > 0, the language $\{a^{2^n}\}^*$:

- is accepted by a deterministic 2-LA of size O(n)
- requires 2ⁿ many states to be accepted by a 2NFA
- \Rightarrow Exponential lower bound for the simulation of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs

Unary 1-LA vs Finite Automata The Exponential Separation

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Fixed n > 0: $L_n = \{a^{2^n}\}$
- The smallest NFA accepting L_n has $2^n + 1$ many states
- ► We show the existence of a *deterministic* 1-LA of O(n) size accepting L_n

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Idea: "divide" the input *n* times by 2

	\triangleright	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	\triangleleft
--	------------------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-----------------

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Idea: "divide" the input *n* times by 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Make n sweeps of the tape

Idea: "divide" the input *n* times by 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Make n sweeps of the tape

Idea: "divide" the input *n* times by 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Make n sweeps of the tape

Idea: "divide" the input *n* times by 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Make n sweeps of the tape

Idea: "divide" the input *n* times by 2

ション ふゆ く 山 マ チャット しょうくしゃ

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a
- Accept if only one a is left on the tape

Idea: "divide" the input *n* times by 2

ション ふゆ く 山 マ チャット しょうくしゃ

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a
- Accept if only one a is left on the tape
- O(n) states

Idea: "divide" the input *n* times by 2

Possible variation:

Rewrite input symbols with the number of current sweep

Idea: "divide" the input *n* times by 2

Possible variation:

Rewrite input symbols with the number of current sweep

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Idea: "divide" the input *n* times by 2

Possible variation:

Rewrite input symbols with the number of current sweep

Idea: "divide" the input *n* times by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ a} \triangleleft a \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ a} \triangleleft$$

$$n = 4$$

Possible variation:

Rewrite input symbols with the number of current sweep

Idea: "divide" the input *n* times by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ a} \triangleleft$$

$$n = 4$$

Possible variation:

Rewrite input symbols with the number of current sweep

Idea: "divide" the input *n* times by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \triangleleft$$

$$n = 4$$

Possible variation:

Rewrite input symbols with the number of current sweep

Idea: "divide" the input *n* times by 2

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd$$
$$n = 4$$

Possible variation:

Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell, guesses the number of the sweep in which this linear bounded automaton rewrites the cell

1st sweep:

For each cell, guess and write a symbol in $\{0, 1, \ldots, n\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

1st sweep:

For each cell, guess and write a symbol in $\{0, 1, \ldots, n\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

- 1st sweep:
 For each cell, guess and write a symbol in {0, 1, ..., n}
- (i + 2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 4} \lhd n = 4$$

- 1st sweep:
 For each cell, guess and write a symbol in {0,1,...,n}
- ▶ (i + 2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

- Ist sweep: For each cell, guess and write a symbol in {0, 1, ..., n}
- (i+2)th sweep, i = 0,..., n:
 Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 1st sweep:
 For each cell, guess and write a symbol in {0,1,..., n}
- (i + 2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

$$> 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 < n = 4$$

- 1st sweep:
 For each cell, guess and write a symbol in {0, 1, ..., n}
- ▶ (i+2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

$$> 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 < n = 4$$

- 1st sweep:
 For each cell, guess and write a symbol in {0, 1, ..., n}
- ► (i+2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i</p>

$$> 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 < n = 4$$

- 1st sweep:
 For each cell, guess and write a symbol in {0,1,...,n}
- (i+2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

► Size *O*(*n*)

$$> 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 < n = 4$$

- 1st sweep:
 For each cell, guess and write a symbol in {0, 1, ..., n}
- (i + 2)th sweep, i = 0,..., n: Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing j < i

ション ふゆ く 山 マ チャット しょうくしゃ

Size O(n)
 We can do better!
 Size O(n), only deterministic transitions

- First two elements: 0 1
- ▶ Next elements: $w \rightarrow ww'$
 - w part already constructed,
 - w' copy of w, with the last symbol replaced by its successor

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

0 1

- First two elements: 0 1
- Next elements: $w \rightarrow ww'$
 - w part already constructed,
 - w' copy of w, with the last symbol replaced by its successor

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

0 1 0 2

- First two elements: 0 1
- Next elements: $w \rightarrow ww'$
 - w part already constructed,
 - w' copy of w, with the last symbol replaced by its successor

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

0 1 0 2 0 1 0 3

- First two elements: 0 1
- Next elements: $w \rightarrow ww'$
 - w part already constructed,
 - w' copy of w, with the last symbol replaced by its successor

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4

The Binary Carry Sequence: Properties

- w_j := prefix of length j of the binary carry sequence
- BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with the greedy method by inspecting w_i from the end

・ロト ・ 日 ・ エ = ・ ・ 日 ・ うへつ

 $w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$

The Binary Carry Sequence: Properties

- w_j := prefix of length j of the binary carry sequence
- BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with the greedy method by inspecting w_j from the end

ション ふゆ アメリア メリア しょうくの

 $w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$ $BIS(w_{11}) = 0 \ \dots$

- w_j := prefix of length j of the binary carry sequence
- BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with the greedy method by inspecting w_j from the end

ション ふゆ アメリア メリア しょうくしゃ

 $w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$ $BIS(w_{11}) = 0 \ 1 \ \dots$

- $w_j := \text{prefix of length } j$ of the binary carry sequence
- BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with the greedy method by inspecting w_j from the end

ション ふゆ アメリア メリア しょうくしゃ

 $w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$ $BIS(w_{11}) = 0 \ 1 \ 3$

- $w_j := \text{prefix of length } j$ of the binary carry sequence
- BIS(w_j) := Backward Increasing Sequence of w_j
 longest increasing sequence obtained with the greedy method by inspecting w_j from the end

 $w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$

 $BIS(w_{11}) = 0 \quad 1 \quad 3$

 $11 = 2^0 + 2^1 + 2^3$

Property 1

 $BIS(w_j) = \text{positions of 1s in}$ the binary representation of j

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$$

$$BIS(w_{11}) = 0 \qquad 1 \qquad 3$$

 $11 = 2^0 + 2^1 + 2^3$

$$w_{11} = 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0$$

$$BIS(w_{11}) = 0 \qquad 1 \qquad 3$$

$$11 = 2^0 + 2^1 + 2^3$$

 $12 = 2^2 + 2^3$

$$w_{11} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0$$
$$BIS(w_{11}) = 0 \quad 1 \quad 3$$
$$11 = 2^{0} + 2^{1} + 2^{3}$$
$$12 = 2^{2} + 2^{3}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $BIS(w_{12}) = 2 3$

$$w_{11} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0$$
$$BIS(w_{11}) = 0 \quad 1 \quad 3$$
$$11 = 2^{0} + 2^{1} + 2^{3}$$
$$12 = 2^{2} + 2^{3}$$
$$BIS(w_{12}) = 2 \quad 3$$
$$w_{12} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0 \quad 2$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$w_{11} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0$$

$$BIS(w_{11}) = 0 \quad 1 \quad 3$$

$$11 = 2^{0} + 2^{1} + 2^{3}$$

$$12 = 2^{2} + 2^{3}$$

$$BIS(w_{12}) = 2 \quad 3$$

$$w_{12} = 0 \quad 1 \quad 0 \quad 2 \quad 0 \quad 1 \quad 0 \quad 3 \quad 0 \quad 1 \quad 0 \quad 2$$

Property 2

The symbol of the binary carry sequence in position j + 1 is the smallest nonnegative integer that does not occur in $BIS(w_j)$

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

\triangleright	0	а	а	а	а	а	а	а	а	а	а	а	а	а	а	а	\triangleleft

n=4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

0 is written on the first cell

For j > 0, with w_j on the first j cells, head on cell j:

- Compute the smallest $i \notin BIS(w_j)$,
 - inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

0 is written on the first cell

For j > 0, with w_j on the first j cells, head on cell j:

- Compute the smallest $i \notin BIS(w_j)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape prefixes of the binary carry sequence

n - 1

うして ふゆう ふほう ふほう うらつ

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
 - Move to the right to search the first cell containing a
 - Write i on that cell
- ▶ When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape prefixes of the binary carry sequence

n=4

うして ふゆう ふほう ふほう うらつ

0 is written on the first cell

For j > 0, with w_j on the first j cells, head on cell j:

- Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape prefixes of the binary carry sequence

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ a \ a \ a \ a} \triangleleft$$

n - 1

うして ふゆう ふほう ふほう うらつ

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
 - Move to the right to search the first cell containing a
 - Write i on that cell
- When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape prefixes of the binary carry sequence

0 is written on the first cell

For j > 0, with w_j on the first j cells, head on cell j:

- Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape prefixes of the binary carry sequence

$$n = 4$$

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ a \ a} \triangleleft$$

0 is written on the first cell

For j > 0, with w_j on the first j cells, head on cell j:

- Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

Idea: Write on the tape prefixes of the binary carry sequence

$$n = 4$$

$$\triangleright \boxed{0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ 3 \ 0 \ 1 \ 0 \ 2 \ 0 \ 1 \ 0 \ a} \triangleleft$$

0 is written on the first cell

For j > 0, with w_j on the first j cells, head on cell j:

- Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When *n* is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
 - Move to the right to search the first cell containing a
 - Write i on that cell
- When n is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

0 is written on the first cell

- For j > 0, with w_j on the first j cells, head on cell j:
 - Compute the smallest i ∉ BIS(w_j), inspecting the left part of the tape
 - Move to the right to search the first cell containing a
 - Write i on that cell
- When n is written on a cell:
 - Move one position to the right
 - Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Each cell is rewritten only in the first visit

- ► Tape alphabet {0,..., n}
- ▶ Finite state control with *O*(*n*) states
- Total size of the description O(n)

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- Each cell is rewritten only in the first visit
- ► Tape alphabet {0,..., n}
- ▶ Finite state control with *O*(*n*) states
- Total size of the description O(n)

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

ション ふゆ アメリア メリア しょうくしゃ

- Each cell is rewritten only in the first visit
- ► Tape alphabet {0,..., n}
- Finite state control with O(n) states
- Total size of the description O(n)

A Deterministic 1-LA for
$$L_n = \{a^{2^n}\}$$

ション ふゆ アメリア メリア しょうくしゃ

- Each cell is rewritten only in the first visit
- ► Tape alphabet {0,..., n}
- ▶ Finite state control with *O*(*n*) states
- Total size of the description O(n)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $\begin{array}{l} \mathsf{det}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs}/\mathsf{DFAs} \\ \mathsf{ndet}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs} \end{array}$

Exponential gap

I.b. our result

u.b. general case

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $\begin{array}{l} \mathsf{det}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs}/\mathsf{DFAs} \\ \mathsf{ndet}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs} \end{array}$

- Exponential gap
- l.b. our result
- u.b. general case

The gap does not change in the conversion into two-way automata $\begin{array}{l} \mbox{det-1-LAs} \rightarrow \mbox{NFAs/DFAs} \\ \mbox{ndet-1-LAs} \rightarrow \mbox{NFAs} \\ \mbox{Exponential gap} \\ \mbox{l.b. our result} \\ \mbox{u.b. general case} \\ \mbox{The gap does not change} \\ \mbox{in the conversion into} \\ \mbox{two-way automata} \end{array}$

 $\mathsf{ndet}\text{-}\mathsf{1}\text{-}\mathsf{LAs}\to\mathsf{DFAs}$

l.b. exp (our result)
u.b. exp exp (general case)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $\begin{array}{l} \mathsf{det}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs}/\mathsf{DFAs} \\ \mathsf{ndet}\text{-}1\text{-}\mathsf{LAs} \to \mathsf{NFAs} \end{array}$

- Exponential gap
- l.b. our result

u.b. general case

The gap does not change in the conversion into two-way automata

$\mathsf{ndet}\text{-}\mathsf{1}\text{-}\mathsf{LAs}\to\mathsf{DFAs}$

l.b. exp (our result)u.b. exp exp (general case)*Problem*Can we reduce the distance between l.b. and u.b.?

An exponential reduction is not always achievable:

Theorem

There is a constant c s.t. for each sufficiently large n there is a unary n-state DFA s.t. all equivalent d-LAs have descriptions of size $> c \cdot n^{1/2}$, for each d > 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Unary CFGs vs Limited Automata

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Unary Context-Free Languages

Theorem ([Ginsburg&Rice '62])

Each unary context-free language is regular

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

Theorem ([Ginsburg&Rice'62])

Each unary context-free language is regular

Theorem ([P.&Shallit&Wang '02])

Each unary context-free grammar can be converted into equivalent DFAs/NFAs of exponential size. These costs cannot be reduced

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem ([Ginsburg&Rice '62])

Each unary context-free language is regular

Theorem ([P.&Shallit&Wang'02])

Each unary context-free grammar can be converted into equivalent DFAs/NFAs of exponential size. These costs cannot be reduced

うして ふゆう ふほう ふほう うらつ

Problem

Study the size relationships between unary CFGs and limited automata Theorem ([Ginsburg&Rice '62])

Each unary context-free language is regular

Theorem ([P.&Shallit&Wang '02])

Each unary context-free grammar can be converted into equivalent DFAs/NFAs of exponential size. These costs cannot be reduced

Problem

Study the size relationships between unary CFGs and limited automata

[This work]

The conversion unary CFGs \rightarrow 1-LAs is polynomial in size

A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language \widehat{D}_{Ω}

- Balanced brackets padded with neutral symbols
- Ex. $\Omega = \{(,), [,], |\}$, strings ||(|), (([|]|)[]||)|()[]|, ...

A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language \widehat{D}_{Ω}

- Balanced brackets padded with neutral symbols
- Ex. $\Omega = \{(,), [,], |\}$, strings ||(|), (([|]|)[]||)|()[]|, ...

Theorem ([Okhotin '12])

- $L \subseteq \Sigma^*$ is context-free iff $L = h(\widehat{D}_{\Omega} \cap R)$, where
 - Ω is an extended bracket alphabet
 - $R \subseteq \Omega^*$ is regular
 - $h: \Omega \to \Sigma$ is a letter-to-letter homomorphism

ション ふゆ く 山 マ チャット しょうくしゃ

A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language \widehat{D}_{Ω}

- Balanced brackets padded with neutral symbols
- Ex. $\Omega = \{(,), [,], |\}$, strings ||(|), (([|]|)[||)|()[]|, ...

Theorem ([Okhotin '12])

 $L \subseteq \Sigma^*$ is context-free iff $L = h(\widehat{D}_{\Omega} \cap R)$, where

- Ω is an extended bracket alphabet
- $R \subseteq \Omega^*$ is regular
- $h: \Omega \to \Sigma$ is a letter-to-letter homomorphism

Remarks

- The size of Ω is *polynomial* wrt the size of a given CFG G specifying L
- ▶ The language *R* is *local*
- ► Strings in $\widehat{D}_{\Omega} \cap R$ encode derivation trees of G

- $G = (V, \{a\}, P, S)$ unary CFG generating L(G)
- ► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $G = (V, \{a\}, P, S)$ unary CFG generating L(G)
- ► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $G = (V, \{a\}, P, S)$ unary CFG generating L(G)
- ► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

- $G = (V, \{a\}, P, S)$ unary CFG generating L(G)
- ► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

- $G = (V, \{a\}, P, S)$ unary CFG generating L(G)
- ► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

・ロト ・ 日本 ・ 日本 ・ 日本

• $G = (V, \{a\}, P, S)$ unary CFG generating L(G)

Then

► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

$L(G) = h(\widehat{D}_{\Omega_G}^{(\#V)} \cap R)$)
---	---

・ロッ ・雪 ・ ・ ヨ ・ ・

- $G = (V, \{a\}, P, S)$ unary CFG generating L(G)
- ► The membership to L(G) can be witnessed by a sequence of trees each one of height ≤ #V

 $L(G) = h(\widehat{D}_{\Omega_G}^{(\#V)} \cap R)$

The "restricted extended" Dyck Language $\widehat{D}_{\Omega_G}^{(\#V)} \subset \widehat{D}_{\Omega_G}$

Then

- ▶ contains only the strings with bracket nesting depth $\leq \#V$
- ▶ is recognized by a 2DFA of size polynomial wrt the size of G

1. Input a^m

2. Guess $w \in h^{-1}(a^m)$

- Scan the tape from left to right
- Rewrite each input cell with a symbol from Ω_G

3. Check if
$$w \in \widehat{D}_{\Omega_C}^{(\#V)}$$

2DFA of polynomial size

- 4. Check if $w \in R$
 - DFA of polynomial size

- 1. Input a^m
- 2. Guess $w \in h^{-1}(a^m)$
 - Scan the tape from left to right
 - Rewrite each input cell with a symbol from Ω_G

- 3. Check if $w \in \widehat{D}_{\Omega_{\mathcal{C}}}^{(\#V)}$
 - 2DFA of polynomial size
- 4. Check if $w \in R$
 - DFA of polynomial size

- 1. Input a^m
- 2. Guess $w \in h^{-1}(a^m)$
 - Scan the tape from left to right
 - Rewrite each input cell with a symbol from Ω_G

- 3. Check if $w \in \widehat{D}_{\Omega_c}^{(\#V)}$
 - 2DFA of polynomial size
- 4. Check if $w \in R$
 - DFA of polynomial size

- 1. Input a^m
- 2. Guess $w \in h^{-1}(a^m)$
 - Scan the tape from left to right
 - Rewrite each input cell with a symbol from Ω_G

3. Check if
$$w \in \widehat{D}_{\Omega_G}^{(\#V)}$$

- 2DFA of polynomial size
- 4. Check if $w \in R$
 - DFA of polynomial size

- 1. Input a^m
- 2. Guess $w \in h^{-1}(a^m)$
 - Scan the tape from left to right
 - Rewrite each input cell with a symbol from Ω_G

3. Check if
$$w \in \widehat{D}_{\Omega_G}^{(\#V)}$$

- 2DFA of polynomial size
- 4. Check if $w \in R$
 - DFA of polynomial size

Summing up:

- ► Each cell is rewritten only in the first visit
- ► The total size of the resulting 1-LA is polynomial

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

- ► Cost of the converse conversion, i.e., (unary) 1-LAs → CFGs General alphabets: 2-LAs → CFGs is *exponential* in size
- Conversion of unary CFGs into deterministic limited automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

- ► Cost of the converse conversion, i.e., (unary) 1-LAs → CFGs General alphabets: 2-LAs → CFGs is *exponential* in size
- ► Conversion of unary CFGs into *deterministic* limited automata

うして ふゆう ふほう ふほう うらつ

Thank you for your attention!

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○