Limited Automata and Unary Languages

Giovanni Pighizzini and Luca Prigioniero

Dipartimento di Informatica Università degli Studi di Milano, Italy

$$
\text { DLT } 2017 \text { - Liège }
$$

August 7-11, 2017

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Deck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Deck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Deck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Deck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Example: 2-LA for the Dyck Language over $\{[],()\}$

Idea:

- Move to the right to search a closed bracket and rewrite it
- Then move to the left, to search an open bracket. If it is of the same type, then rewrite it and repeat

Each cell is rewritten only in the first 2 visits!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- For each $d \geq 2, d$-limited automata characterize context-free languages
- 1-limited automata characterize regular languages
[Wagner\&Wechsung '86]

Descriptional Complexity: Limited Automata vs PDAs

- $d=2$ [P.\&Pisoni '15]

Descriptional Complexity: Limited Automata vs PDAs

- $d=2$ [P.\&Pisoni'15]

2-LAs \rightarrow PDAs
Exponential gap

Descriptional Complexity: Limited Automata vs PDAs

- $d=2$ [P.\&Pisoni '15]

2-LAs \rightarrow PDAs
Exponential gap

PDAs \rightarrow 2-LAs

Polynomial upper bound

Descriptional Complexity: Limited Automata vs PDAs

- $d=2$ [P.\&Pisoni '15]

2-LAs \rightarrow PDAs
Exponential gap

PDAs \rightarrow 2-LAs

Polynomial upper bound

- $d>2$ [Kutrib\&P.\&Wendlandt to app.]

$$
d-\text { LAs } \rightarrow \text { PDAs }
$$

Still exponential!

Descriptional Complexity: Limited vs Finite Automata

- $d=1 \quad[$ P.\&Pisoni '14]
n-state 1-LAs \rightarrow finite automata

	DFA	NFA
nondet. 1-LA		
det. 1-LA		

- The gaps are optimal! (binary witness)

What about the unary case?

Descriptional Complexity: Limited vs Finite Automata

- $d=1 \quad[$ P.\&Pisoni '14]
n-state 1-LAs \rightarrow finite automata

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	
det. 1-LA		

- The gaps are optimal! (binary witness)

What about the unary case?

Descriptional Complexity: Limited vs Finite Automata

- $d=1 \quad[$ P.\&Pisoni '14]
n-state 1-LAs \rightarrow finite automata

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA		

- The gaps are optimal! (binary witness)

Descriptional Complexity: Limited vs Finite Automata

- $d=1 \quad[$ P.\&Pisoni '14]
n-state 1-LAs \rightarrow finite automata

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA	$n \cdot(n+1)^{n}$	$n \cdot(n+1)^{n}$

- The gaps are optimal! (binary witness)

Descriptional Complexity: Limited vs Finite Automata

- $d=1 \quad[$ P.\&Pisoni '14]

n-state 1-LAs \rightarrow finite automata

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA	$n \cdot(n+1)^{n}$	$n \cdot(n+1)^{n}$

- The gaps are optimal! (binary witness)

Descriptional Complexity: Limited vs Finite Automata

- $d=1 \quad\left[P . \& P i s o n i{ }^{\prime} 14\right]$

n-state 1-LAs \rightarrow finite automata		
	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA	$n \cdot(n+1)^{n}$	$n \cdot(n+1)^{n}$

- The gaps are optimal! (binary witness)

What about the unary case?

The Unary Case, $d=1$

Theorem ([P.\&Pisoni '14])
For n prime, the language $\left\{a^{n^{2}}\right\}^{*}$:

- is accepted by a 1-LA with $n+1$ states and a constant size tape alphabet
- requires n^{2} many states to be accepted be a 2NFA
\Rightarrow Quadratic lower bound for the simulation of unary 1-LAs by finite automata

The Unary Case, $d=1$

Theorem ([Kutrib\&Wendlandt'15])

For n prime, the language $\left\{a^{n \cdot F(n)}\right\}$:

- is accepted by a 1-LA with $4 n$ states and a tape alphabet with $n+1$ symbols
- requires $n \cdot F(n)$ many states to be accepted be a 2NFA where $F(n)=e^{\sqrt{n \cdot \ln (n)(1+o(1))}}$ (Landau function)
\Rightarrow Superpolynomial lower bound for the simulation of unary 1-LAs by finite automata

The Unary Case, $d=1$

Theorem ([Kutrib\&Wendlandt'15])

For n prime, the language $\left\{a^{n \cdot F(n)}\right\}$:

- is accepted by a 1-LA with $4 n$ states and a tape alphabet with $n+1$ symbols
- requires $n \cdot F(n)$ many states to be accepted be a 2NFA where $F(n)=e^{\sqrt{n \cdot \ln (n)}(1+o(1))}$ (Landau function)
\Rightarrow Superpolynomial lower bound for the simulation of unary 1-LAs by finite automata

This paper: Exponential lower bound

The Unary Case, $d>1$

- d-LA $\equiv \operatorname{CFLs}(d>1)$
- Each unary CFL is regular
[Ginsburg\&Rice '62]
\Rightarrow unary d-LA \equiv unary REG

The Unary Case, $d>1$

- $d-\mathrm{LA} \equiv \mathrm{CFLs}(d>1)$
- Each unary CFL is regular
[Ginsburg\&Rice '62]
\Rightarrow unary d-LA \equiv unary REG
Theorem ([P.\&Pisoni '15])
For $n>0$, the language $\left\{a^{2^{n}}\right\}^{*}$:
- is accepted by a deterministic 2-LA of size $O(n)$
- requires 2^{n} many states to be accepted by a 2NFA
\Rightarrow Exponential lower bound for the simulation of unary 2-LAs by finite automata

The Unary Case, $d>1$

- $d-\mathrm{LA} \equiv \mathrm{CFLs}(d>1)$
- Each unary CFL is regular
[Ginsburg\&Rice '62]
\Rightarrow unary d-LA \equiv unary REG
Theorem ([P.\&Pisoni '15])
For $n>0$, the language $\left\{a^{2^{n}}\right\}^{*}$:
- is accepted by a deterministic 2-LA of size $O(n)$
- requires 2^{n} many states to be accepted by a 2NFA
\Rightarrow Exponential lower bound for the simulation of unary 2-LAs by finite automata

This paper: Same lower bound for the simulation of unary 1-LAs

Unary 1-LA vs Finite Automata
The Exponential Separation

The Witness Language

- Fixed $n>0: \quad L_{n}=\left\{a^{2^{n}}\right\}$
- The smallest NFA accepting L_{n} has $2^{n}+1$ many states
- We show the existence of a deterministic 1-LA of $O(n)$ size accepting L_{n}

A Linear Bounded Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| a | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| a | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \triangleleft | | | | | | | | | | | | | | | |

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| X | a | X | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright	X	X	X	a	X	X	X	a	X	X	X	a	X	X	X	a

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

$$
\triangleright
$$

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| X | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | | | | | | | | | | | | | | | |

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a
- Accept if only one a is left on the tape

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| X | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Make n sweeps of the tape
- At each sweep overwrite each "odd" a
- Accept if only one a is left on the tape
- $O(n)$ states

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| a | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \triangleleft | | | | | | | | | | | | | | | |

Possible variation:

- Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| 0 | a | 0 | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Possible variation:

- Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| 0 | 1 | 0 | a | 0 | 1 | 0 | a | 0 | 1 | 0 | a | 0 | 1 | 0 | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Possible variation:

- Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | a | 0 | 1 | 0 | 2 | 0 | 1 | 0 | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Possible variation:

- Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

Possible variation:

- Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Possible variation:

- Rewrite input symbols with the number of current sweep

A Linear Bounded Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: "divide" the input n times by 2

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Possible variation:

- Rewrite input symbols with the number of current sweep

We can build a 1-LA that, for each tape cell, guesses the number of the sweep in which this linear bounded automaton rewrites the cell

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

\triangleright| a | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
n=4
$$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

A 1-Limited Automaton for $L_{n}=\left\{2^{2^{n}}\right\}$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
n=4
$$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
n=4
$$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
n=4
$$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4

$$
n=4
$$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

$$
\triangleright \begin{array}{llllllllllllllllllll}
& 0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 4 \\
\hline
\end{array}
$$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

$$
\triangleright \begin{array}{llllllllllllllllll}
& 0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 4 \\
\triangleleft
\end{array}
$$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4

$n=4$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

- Size $O(n)$

A 1-Limited Automaton for $L_{n}=\left\{a^{2^{n}}\right\}$

0	1	0	2	0	1	0	3	0	1	0	2	0	1	0	4

$n=4$

- 1st sweep:

For each cell, guess and write a symbol in $\{0,1, \ldots, n\}$

- $(i+2)$ th sweep, $i=0, \ldots, n$:

Verify that the symbol i occurs in all odd positions, where positions are counted ignoring cells containing $j<i$

- Size $O(n)$

We can do better!

Size $O(n)$, only deterministic transitions

The Binary Carry Sequence

The string written by the above linear bounded automaton is a prefix of the binary carry sequence:

- First two elements: 01

The Binary Carry Sequence

The string written by the above linear bounded automaton is a prefix of the binary carry sequence:

- First two elements: 01
- Next elements: $w \rightarrow w w^{\prime}$
- w part already constructed,
- w^{\prime} copy of w, with the last symbol replaced by its successor
$\begin{array}{llll}0 & 1 & 0 & 2\end{array}$

The Binary Carry Sequence

The string written by the above linear bounded automaton is a prefix of the binary carry sequence:

- First two elements: 01
- Next elements: $w \rightarrow w w^{\prime}$
- w part already constructed,
- w^{\prime} copy of w, with the last symbol replaced by its successor

$$
\begin{array}{llllllll}
0 & 1 & 0 & 2 & 0 & 1 & 0 & 3
\end{array}
$$

The Binary Carry Sequence

The string written by the above linear bounded automaton is a prefix of the binary carry sequence:

- First two elements: 01
- Next elements: $w \rightarrow w w^{\prime}$
- w part already constructed,
- w^{\prime} copy of w, with the last symbol replaced by its successor

$$
\begin{array}{llllllllllllllll}
0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 4
\end{array}
$$

The Binary Carry Sequence: Properties

- $w_{j}:=$ prefix of length j of the binary carry sequence
- BIS $\left(w_{j}\right):=$ Backward Increasing Sequence of w_{j} longest increasing sequence obtained with the greedy method by inspecting w_{j} from the end

$$
w_{11}=\begin{array}{lllllllllll}
0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0
\end{array}
$$

The Binary Carry Sequence: Properties

- $w_{j}:=$ prefix of length j of the binary carry sequence
- BIS $\left(w_{j}\right):=$ Backward Increasing Sequence of w_{j} longest increasing sequence obtained with the greedy method by inspecting w_{j} from the end

$$
\begin{aligned}
& w_{11}=\begin{array}{lllllllllll}
0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 \\
B I S\left(w_{11}\right)= & 0 & \ldots
\end{array}
\end{aligned}
$$

The Binary Carry Sequence: Properties

- $w_{j}:=$ prefix of length j of the binary carry sequence
- BIS $\left(w_{j}\right):=$ Backward Increasing Sequence of w_{j} longest increasing sequence obtained with the greedy method by inspecting w_{j} from the end

$$
\begin{aligned}
& w_{11}=0
\end{aligned} 1 \begin{array}{llllllllll}
0 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 \\
B I S\left(w_{11}\right)= & 0 & 1 & \ldots
\end{array}
$$

The Binary Carry Sequence: Properties

- $w_{j}:=$ prefix of length j of the binary carry sequence
- BIS $\left(w_{j}\right):=$ Backward Increasing Sequence of w_{j} longest increasing sequence obtained with the greedy method by inspecting w_{j} from the end

$$
\begin{aligned}
& w_{11}= \\
& 0
\end{aligned} 1
$$

The Binary Carry Sequence: Properties

- $w_{j}:=$ prefix of length j of the binary carry sequence
- BIS $\left(w_{j}\right):=$ Backward Increasing Sequence of w_{j} longest increasing sequence obtained with the greedy method by inspecting w_{j} from the end

$$
\begin{array}{llllllllllll}
w_{11}= & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 \\
B I S \\
B & \left.w_{11}\right)= & 0 & 1 & & 3 & & & & &
\end{array}
$$

$$
11=2^{0}+2^{1}+2^{3}
$$

Property 1

$\operatorname{BIS}\left(w_{j}\right)=$ positions of 1 s in the binary representation of j

The Binary Carry Sequence: Properties

$$
\begin{gathered}
w_{11}=\begin{array}{llllllllll}
0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1
\end{array} \\
B I S\left(w_{11}\right)= \\
\\
11
\end{gathered}
$$

The Binary Carry Sequence: Properties

$$
\left.\begin{array}{rl}
w_{11}= & 0
\end{array} 1 \begin{array}{llllllllll}
1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 \\
B I S \\
\left(w_{11}\right) & = & 0 & 1 & 3
\end{array}\right] \begin{array}{ll}
11 & = \\
12 & 2^{0}+2^{1}+2^{3} \\
& 2^{2}+2^{3}
\end{array}
$$

The Binary Carry Sequence: Properties

$$
\begin{aligned}
& w_{11}=\begin{array}{lllllllllll}
0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0
\end{array} \\
& B I S\left(w_{11}\right)=0 \quad 1 \quad 3 \\
& 11=2^{0}+2^{1}+2^{3} \\
& 12=\quad 2^{2}+2^{3} \\
& B I S\left(w_{12}\right)=23
\end{aligned}
$$

The Binary Carry Sequence: Properties

$$
\left.\begin{array}{cccccccccccc}
w_{11}= & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 \\
B I S\left(w_{11}\right)= & 0 & 1 & 3 & & & & & & \\
11= & 2^{0}+2^{1}+2^{3} & & & & & & \\
12= & & 2^{2}+2^{3} & & & & & & \\
B I S\left(w_{12}\right)= & & 2 & 3 & & & & & & \\
w_{12}= & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0
\end{array}\right)
$$

The Binary Carry Sequence: Properties

$$
\begin{array}{lllllllllllll}
w_{11}= & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 \\
B I S \\
B & \left.w_{11}\right)= & 0 & 1 & 3 & & & & & & \\
11= & 2^{0}+2^{1}+2^{3} & & & & & & \\
12= & & 2^{2}+2^{3} & & & & & & \\
B I S\left(w_{12}\right)= & & 2 & 3 & & & & & & \\
w_{12}= & 0 & 1 & 0 & 2 & 0 & 1 & 0 & 3 & 0 & 1 & 0 & 2
\end{array}
$$

Property 2

The symbol of the binary carry sequence in position $j+1$ is the smallest nonnegative integer that does not occur in BIS $\left(w_{j}\right)$

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

\triangleright	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a	a

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

\triangleright| 0 | a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin \operatorname{BIS}\left(w_{j}\right)$, inspecting the left part of the tape - Move to the right to search the first cell containing a - Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin B I S\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a - Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

$$
n=4
$$

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin B I S\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin \operatorname{BIS}\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin \operatorname{BIS}\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin \operatorname{BIS}\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin \operatorname{BIS}\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin \operatorname{BIS}\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

$$
n=4
$$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- 0 is written on the first cell
- For $j>0$, with w_{j} on the first j cells, head on cell j :
- Compute the smallest $i \notin B I S\left(w_{j}\right)$, inspecting the left part of the tape
- Move to the right to search the first cell containing a
- Write i on that cell
- When n is written on a cell:
- Move one position to the right
- Accept iff the current cell contains the right endmarker

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

$$
n=4
$$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Each cell is rewritten only in the first visit
- Tape alphabet $\{0, \ldots, n\}$
- Finite state control with $O(n)$ states
- Total size of the description $O(n)$

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

$$
n=4
$$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Each cell is rewritten only in the first visit
- Tape alphabet $\{0, \ldots, n\}$
- Finite state control with $O(n)$ states
- Total size of the description $O(n)$

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence

$$
n=4
$$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Each cell is rewritten only in the first visit
- Tape alphabet $\{0, \ldots, n\}$
- Finite state control with $O(n)$ states

A Deterministic 1-LA for $L_{n}=\left\{a^{2^{n}}\right\}$

Idea: Write on the tape prefixes of the binary carry sequence
$n=4$

\triangleright| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Each cell is rewritten only in the first visit
- Tape alphabet $\{0, \ldots, n\}$
- Finite state control with $O(n)$ states
- Total size of the description $O(n)$

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs \rightarrow NFAs/DFAs ndet-1-LAs \rightarrow NFAs

Exponential gap
I.b. our result
u.b. general case

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs \rightarrow NFAs/DFAs ndet-1-LAs \rightarrow NFAs

Exponential gap

I.b. our result
u.b. general case

The gap does not change in the conversion into two-way automata

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs \rightarrow NFAs/DFAs ndet-1-LAs \rightarrow NFAs

Exponential gap

I.b. our result
u.b. general case

The gap does not change in the conversion into two-way automata

ndet-1-LAs \rightarrow DFAs
I.b. \exp (our result)
u.b. $\exp \exp$ (general case)

Unary 1-LA vs Finite Automata: Upper and Lower Bounds

det-1-LAs \rightarrow NFAs/DFAs ndet-1-LAs \rightarrow NFAs

Exponential gap

I.b. our result
u.b. general case

The gap does not change in the conversion into two-way automata

ndet-1-LAs \rightarrow DFAs

I.b. \exp (our result)
u.b. $\exp \exp$ (general case)

Problem
Can we reduce the distance between l.b. and u.b.?

From Unary Finite Automata to 1-LAs

An exponential reduction is not always achievable:

Theorem

There is a constant c s.t. for each sufficiently large n there is a unary n-state DFA s.t. all equivalent d-LAs have descriptions of size $>c \cdot n^{1 / 2}$, for each $d>0$

Unary CFGs vs Limited Automata

Unary Context-Free Languages

Theorem ([Ginsburg\&Rice '62])
Each unary context-free language is regular

Unary Context-Free Languages

Theorem ([Ginsburg\&Rice '62])

Each unary context-free language is regular
Theorem ([P.\&Shallit\&Wang '02])
Each unary context-free grammar can be converted into equivalent DFAs/NFAs of exponential size. These costs cannot be reduced

Unary Context-Free Languages

Theorem ([Ginsburg\&Rice '62])

Each unary context-free language is regular

Theorem ([P.\&Shallit\&Wang '02])

Each unary context-free grammar can be converted into equivalent DFAs/NFAs of exponential size. These costs cannot be reduced

Problem

Study the size relationships between unary CFGs and limited automata

Unary Context-Free Languages

Theorem ([Ginsburg\&Rice '62])

Each unary context-free language is regular
Theorem ([P.\&Shallit\&Wang '02])
Each unary context-free grammar can be converted into equivalent DFAs/NFAs of exponential size. These costs cannot be reduced

Problem

Study the size relationships between unary CFGs and limited automata

[This work]

The conversion unary CFGs \rightarrow 1-LAs is polynomial in size

A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language \widehat{D}_{Ω}

- Balanced brackets padded with neutral symbols
- Ex. $\Omega=\{(),,[],, \mid\}$, strings $\|(\mid),(([\mid] \mid)[]| |)|()[]|, \ldots$

A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language \widehat{D}_{Ω}

- Balanced brackets padded with neutral symbols
- Ex. $\Omega=\{(),,[],, \mid\}$, strings $||(\mid),(([\mid] \mid)[]| |)|()[]|, \ldots$

Theorem ([Okhotin '12])
$L \subseteq \Sigma^{*}$ is context-free iff $L=h\left(\widehat{D}_{\Omega} \cap R\right)$, where

- Ω is an extended bracket alphabet
- $R \subseteq \Omega^{*}$ is regular
- $h: \Omega \rightarrow \Sigma$ is a letter-to-letter homomorphism

A Variant of the Chomsky-Schützenberger Theorem

Extended Dyck Language \widehat{D}_{Ω}

- Balanced brackets padded with neutral symbols
- Ex. $\Omega=\{(),,[],, \mid\}$, strings $\|(\mid),(([\mid] \mid)[]| |)|()[]|, \ldots$

Theorem ([Okhotin '12])

$L \subseteq \Sigma^{*}$ is context-free iff $L=h\left(\widehat{D}_{\Omega} \cap R\right)$, where

- Ω is an extended bracket alphabet
- $R \subseteq \Omega^{*}$ is regular
- $h: \Omega \rightarrow \Sigma$ is a letter-to-letter homomorphism

Remarks

- The size of Ω is polynomial wrt the size of a given CFG G specifying L
- The language R is local
- Strings in $\widehat{D}_{\Omega} \cap R$ encode derivation trees of G

Chomsky-Schützenberger Theorem in the Unary Case

- $G=(V,\{a\}, P, S)$ unary CFG generating $L(G)$
- The membership to $L(G)$ can be witnessed by a sequence of trees each one of height $\leq \# V$

Chomsky-Schützenberger Theorem in the Unary Case

- $G=(V,\{a\}, P, S)$ unary CFG generating $L(G)$
- The membership to $L(G)$ can be witnessed by a sequence of trees each one of height $\leq \# V$

Chomsky-Schützenberger Theorem in the Unary Case

- $G=(V,\{a\}, P, S)$ unary CFG generating $L(G)$
- The membership to $L(G)$ can be witnessed by a sequence of trees each one of height $\leq \# V$

Chomsky-Schützenberger Theorem in the Unary Case

- $G=(V,\{a\}, P, S)$ unary CFG generating $L(G)$
- The membership to $L(G)$ can be witnessed by a sequence of trees each one of height $\leq \# V$

Chomsky-Schützenberger Theorem in the Unary Case

- $G=(V,\{a\}, P, S)$ unary CFG generating $L(G)$
- The membership to $L(G)$ can be witnessed by a sequence of trees each one of height $\leq \# V$

Chomsky-Schützenberger Theorem in the Unary Case

- $G=(V,\{a\}, P, S)$ unary CFG generating $L(G)$
- The membership to $L(G)$ can be witnessed by a sequence of trees each one of height $\leq \# V$

Then

$$
L(G)=h\left(\widehat{D}_{\Omega_{G}}^{(\# V)} \cap R\right)
$$

Chomsky-Schützenberger Theorem in the Unary Case

- $G=(V,\{a\}, P, S)$ unary CFG generating $L(G)$
- The membership to $L(G)$ can be witnessed by a sequence of trees each one of height $\leq \# V$

Then

$$
L(G)=h\left(\widehat{D}_{\Omega_{G}}^{(\# V)} \cap R\right)
$$

The "restricted extended" Dyck Language $\widehat{D}_{\Omega_{G}}^{(\# V)} \subset \widehat{D}_{\Omega_{G}}$

- contains only the strings with bracket nesting depth $\leq \# V$
- is recognized by a 2DFA of size polynomial wrt the size of G

A 1-LA Accepting $L(G)=h\left(\widehat{D}_{\Omega_{G}}^{(\# V)} \cap R\right)$

1. Input a^{m}

Guess $w \in h^{-1}\left(a^{m}\right)$

- Scan the tape from left to right
- Rewrite each input cell with a symbol from Ω_{G}

3. Check if $w \in \widehat{D}_{\Omega_{G}}^{(\# V)}$

- 2DFA of polynomial size

4. Check if $w \in R$

- DFA of polynomial size

A 1-LA Accepting $L(G)=h\left(\widehat{D}_{\Omega_{G}}^{(\# V)} \cap R\right)$

1. Input a^{m}
2. Guess $w \in h^{-1}\left(a^{m}\right)$

- Scan the tape from left to right
- Rewrite each input cell with a symbol from Ω_{G}

3. Check if $w \in \widehat{D}_{\Omega_{G}}^{(\# V)}$

- 2DFA of polynomial size

4. Check if $w \in R$

- DFA of polynomial size

A 1-LA Accepting $L(G)=h\left(\widehat{D}_{\Omega_{G}}^{(\# V)} \cap R\right)$

1. Input a^{m}
2. Guess $w \in h^{-1}\left(a^{m}\right)$

- Scan the tape from left to right
- Rewrite each input cell with a symbol from Ω_{G}

3. Check if $w \in \widehat{D}_{\Omega_{G}}^{(\# V)}$

- 2DFA of polynomial size
- DFA of polynomial size

A 1-LA Accepting $L(G)=h\left(\widehat{D}_{\Omega_{G}}^{(\# V)} \cap R\right)$

1. Input a^{m}
2. Guess $w \in h^{-1}\left(a^{m}\right)$

- Scan the tape from left to right
- Rewrite each input cell with a symbol from Ω_{G}

3. Check if $w \in \widehat{D}_{\Omega_{G}}^{(\# V)}$

- 2DFA of polynomial size

4. Check if $w \in R$

- DFA of polynomial size

A 1-LA Accepting $L(G)=h\left(\widehat{D}_{\Omega_{G}}^{(\# V)} \cap R\right)$

1. Input a^{m}
2. Guess $w \in h^{-1}\left(a^{m}\right)$

- Scan the tape from left to right
- Rewrite each input cell with a symbol from Ω_{G}

3. Check if $w \in \widehat{D}_{\Omega_{G}}^{(\# V)}$

- 2DFA of polynomial size

4. Check if $w \in R$

- DFA of polynomial size

Summing up:

- Each cell is rewritten only in the first visit
- The total size of the resulting 1-LA is polynomial

Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

- Cost of the converse conversion, i.e., (unary) 1-LAs \rightarrow CFGs General alphabets: 2-LAs \rightarrow CFGs is exponential in size
- Conversion of unary CFGs into deterministic limited automata

Unary CFGs vs Limited Automata

We proved that

Theorem

The conversion of unary CFGs into 1-LAs is polynomial in size

Problems

- Cost of the converse conversion, i.e., (unary) 1-LAs \rightarrow CFGs General alphabets: 2-LAs \rightarrow CFGs is exponential in size
- Conversion of unary CFGs into deterministic limited automata

Thank you for your attention!

