Restricted Turing Machines and Language Recognition

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

LATA 2016 - Prague
March 14-18, 2016

General Contents

Part I: Fast One-Tape Turing Machines Hennie Machines \& C

Part II: One-Tape Turing Machines with Rewriting Restrictions Limited Automata \& C

The Chomsky Hierarchy

(One-tape) Turing Machines		type 0
Linear Bounded Automata	type 1	
Pushdown Automata	type 2	

Part II: One-Tape TMs with Rewriting Restrictions

Outline

- Limited automata
- Equivalence with CFLs
- Determinism vs nondeterminism
- Descriptional complexity aspects
- 1-limited automata and regular languages
- Related models

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- For each $d \geq 2, d$-limited automata characterize context-free languages
- 1-limited automata characterize regular languages
[Wagner\&Wechsung '86]

Example: Balanced Parentheses

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by x
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:
(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii) If in (iii) the left end of the tape is reached then reject Each cell is rewritten only in the first 2 visits!

The Chomsky Hierarchy

(One-tape) Turing Machines		type 0
Linear Bounded Automata	type 1	
d-Limited Automata $(d \geq 2)$	type 2	
1 1-Limited Automata	type 3	

Why Each CFL is Accepted by a 2-LA [P.\&Pisoni '14]

Main tool:
Theorem ([Chomsky\&Schützenberger '63])
Every context-free language $L \subseteq \Sigma^{*}$ can be expressed as

$$
L=h\left(D_{k} \cap R\right)
$$

where, for $\Omega_{k}=\left\{\left({ }_{1},\right)_{1},(2,)_{2}, \ldots,(k,)_{k}\right\}$:

- $D_{k} \subseteq \Omega_{k}^{*}$ is a Dyck language
- $R \subseteq \Omega_{k}^{*}$ is a regular language
- $h: \Omega_{k} \rightarrow \Sigma^{*}$ is an homomorphism

Furthermore, it is possible to restrict to non-erasing homomorphisms [Okhotin '12]

Why Each CFL is Accepted by a 2-LA

L context-free language, with $L=h\left(D_{k} \cap R\right)$

- T nondeterministic transducer computing h^{-1}
- A_{D} 2-LA accepting the Dyck language D_{k}
- A_{R} finite automaton accepting R

Why Each CFL is Accepted by a 2-LA

$\# \# \# \# \sigma_{1}$	$\# \# \sigma_{2}$	\cdots	$\# \# \# \sigma_{k}$

(padded) input of A_{D} and A_{R}
Not stored into the tape!
$z=\sigma_{1} \sigma_{2} \cdots \sigma_{k} \in h^{-1}(w)$
$h\left(\sigma_{i}\right)=u_{i}$

Non erasing homomorphism!

Each σ_{i} is produced "on the fly"

Why Each CFL is Accepted by a 2-LA

$$
\begin{aligned}
& w=\cdots u_{i} \cdots \\
& \Downarrow \\
& h\left(\sigma_{i}\right)=u_{i} \\
& \Downarrow \\
& \gamma_{i}: \text { first rewriting by } A_{D}
\end{aligned}
$$

- On the tape, u_{i} is replaced directly by $\# \# \# \# \gamma_{i}$
- One move of A_{R} on input σ_{i} is also simulated

Why Each CFL is Accepted by a 2-LA

The resulting machine is a 2-LA recognizing the given CFL
Problems:

- What about the size of the resulting machine?
- What about the case of deterministic CFLs?

PDAs vs Limited Automata

Simulation of Pushdown Automata by 2-Limited Automata

Normal form for (D)PDAs:

- at each step, the stack height increases at most by 1
- ϵ-moves cannot push on the stack

Each PDA can be simulated by an equivalent 2-LA

- Polynomial size
- Determinism is preserved

Simulation of 2-Limited Automata by Pushdown Automata

Problem

What about the converse simulation, namely that of 2-LAs by PDAs?
[Hibbard '67]
Original simulation
Reformulation \quad [P.\&Pisoni '15]

- Exponential cost
- Determinism is preserved (extra costs)

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_{w} w is a "frozen" string

$$
\tau_{w} \subseteq Q \times\{-1,+1\} \times Q \times\{-1,+1\}
$$

$\left(q, d^{\prime}, p, d^{\prime \prime}\right) \in \tau_{w}$ iff M on a tape segment containing w has a computation path:

- entering the segment in q from d^{\prime}
- exiting the segment in p to $d^{\prime \prime}$
- left $=-1$, right $=+1$

Simulation of 2-LAs by PDAs

Initial configuration

After some steps...

Simulation of 2-LAs by PDAs

$\delta(q, g) \ni(p, Z,+1)$ move to the right
\Downarrow

normal mode
push and direct simulation

Simulation of 2-LAs by PDAs

$\delta(p, h) \ni(r, H,-1)$
move to the left

back mode

Simulation of 2-LAs by PDAs

$$
\delta(r, Z) \ni(q, G,-1)
$$

move to the left

back mode

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

Simulation of 2-LAs by PDAs

resume normal mode move to the right

Simulation of 2-LAs by PDAs

Summing up...
Given a 2-LA M with:

- n states

At most $2^{4 n^{2}}$ many different tables!

- m symbol working alphabet

Resulting PDA:

- States

Normal mode: states of M
Back mode: (q, τ)

States
$2 n\left(2 n^{2}+1\right)+1$ q state of M, τ transition table

- Pushdown symbols
- Tape symbols of M
- Transition tables

Pushdown symbols

$m+2^{4 n^{2}}$

- Each move can increase the stack height at most by 1

$$
\text { 2-LAs } \rightarrow \text { PDAs }
$$

Optimality: the Witness Languages K_{n}

Given $n \geq 1$:

At least n of these blocks are equal to the last block x

$$
\begin{aligned}
K_{n}=\left\{x_{1} x_{2} \cdots x_{k} x \mid\right. & k \geq 0, x_{1}, x_{2}, \ldots, x_{k}, x \in\{0,1\}^{n}, \\
& \exists i_{1}<i_{2}<\cdots<i_{n} \in\{1, \ldots, k\}, \\
& \left.x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{n}}=x\right\}
\end{aligned}
$$

Example $(n=3): \quad 001|110| 011|110| 110|111| 110$

How to Recognize K_{n}

$$
\begin{equation*}
001110011110110111110 \tag{n=3}
\end{equation*}
$$

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols
3. Compare each block of length n (from the right), symbol by symbol, with the last block
4. When the left end of the tape is reached accept if and only if the number of block equal to the last one is $\geq n$
Complexity:

- K_{n} is accepted by a deterministic 2-LA with $O\left(n^{2}\right)$ states and a fixed working alphabet
- Each PDA accepting K_{n} has size at least exponential in n (Proof based on the interchange lemma for CFLs)

Simulation of 2-LAs by PDAs

Cost of the simulation

- Exponential size for the simulation of 2-LAs by PDAs
- Optimal

Computational Power of Limited Automata

From the simulations:

- 2-Limited Automata \equiv CFLs

What about d-Limited Automata, with $d>2$?

- They are still characterize CFLs [Hibbard '67]
- They can be simulated by exponentially larger PDAs [Kutrib\&P.\&Wendlandt subm.]

What about 1-Limited Automata?

- Regular languages
[Wagner\&Wechsung '86]

Determinism vs Nondeterminism

- Determinism is preserved by the exponential simulation of 2-limited automata by PDAs provided that the input of the PDA is right end-marked
- Without end-marker: double exponential simulation
- Conjecture: this cost cannot be reduced
- The converse simulation also preserve determinsm

$$
\text { Deterministic 2-Limited Automata } \equiv \text { DCFLs }
$$

[P.\&Pisoni '15]

Determinism vs Nondeterminism

What about deterministic d-Limited Automata, $d>2$?

- $L=\left\{a^{n} b^{n} c \mid n \geq 0\right\} \cup\left\{a^{n} b^{2 n} d \mid n \geq 0\right\}$
is accepted by a deterministic 3-LA, but is not a DCFL
- Infinite hierarchy
[Hibbard '67]
For each $d \geq 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic $(d-1)$-limited automaton

1-Limited Automata

Simulation of 1-Limited Automata by Finite Automata

Main idea: transformation of two-way NFAs into one-way DFAs [Shepherdson '59]

- First visit to a cell: direct simulation
- Further visits: transition tables

$$
\text { for } x \in \Sigma^{*}, \tau_{x} \subseteq Q \times Q: \quad(p, q) \in \tau_{x} \text { iff } \quad \times \quad \not \quad p
$$

- Finite control of the DFA which simulates the two-way NFA:

- transition table of the already scanned input prefix
- set of possible current states

Simulation of 1-Limited Automata by Finite Automata

Simulation of 1-LAs:
[Wagner\&Wechsung '86]

- The transition table depends on the string used to rewrite the input prefix x
- This string was nondeterministically chosen by the 1-LA

The simulating DFA keeps in its finite control a sets of transition tables

1-Limited Automata \rightarrow Finite Automata: Upper Bounds

Theorem

Let M be a 1-LA with n states.

- There exists an equivalent DFA with $2^{n \cdot 2^{n^{2}}}$ states.
- There exists an equivalent NFA with $n \cdot 2^{n^{2}}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot(n+1)^{n}$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^{2}}}$	$n \cdot 2^{n^{2}}$
det. 1-LA	$n \cdot(n+1)^{n}$	$n \cdot(n+1)^{n}$

These upper bounds do not depend on the alphabet size of M ! The gaps are optimal!

Optimality: the Witness Languages

Fixed $n \geq 1$:

At least n of these blocks are equal

$$
\begin{aligned}
L_{n}=\left\{x_{1} x_{2} \cdots x_{k} \mid\right. & k \geq 0, x_{1}, x_{2}, \ldots, x_{k} \in\{0,1\}^{n} \\
& \exists i_{1}<i_{2}<\cdots<i_{n} \in\{1, \ldots, k\}, \\
& \left.x_{i_{1}}=x_{i_{2}}=\cdots=x_{i_{n}}\right\}
\end{aligned}
$$

Example $(n=3): \quad 001|110| 011|110| 110|111| 011$

How to Recognize L_{n} : 1-Limited Automata

$$
001 \text { |̂1 } 10 \mid 011 \text { |̂̂1 } 10|\hat{1} 10| 111 \mid 011 \quad(n=3)
$$

- Nondeterministic strategy: Guess the leftmost positions of n input blocks containing the same factor and Verify
- Implementation (3 tape scans):

1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

- the input length is a multiple of n, and
- the marked cells correspond to the leftmost symbols of some blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

- $O(n)$ states

How to Recognize L_{n} : Deterministic Finite Automata

- Idea:
- For each $x \in\{0,1\}^{n}$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n
- State upper bound:
- Finite control:
a counter (up to n) for each possible block of length n
- There are 2^{n} possible different blocks of length n
- Number of states double exponential in n more precisely $\left(2^{n}-1\right) \cdot n^{2^{n}}+n$
- State lower bound:
- $n^{2^{n}}$ (standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!

How to Recognize L_{n} : Nondeterministic Finite Automata

- Idea:
- Guess $x \in\{0,1\}^{n}$
- Verify whether or not n blocks in the input contains x
- State upper bound:
- Finite control: a counter $\leq n$ for the occurrences of x, and a counter modulo n for input positions
- Number of states: $O\left(n^{2} \cdot 2^{n}\right)$
- State lower bound:
- $n^{2} \cdot 2^{n}$ (fooling set technique)

Nondetermism vs. Determinism in 1-LAs

$$
\begin{aligned}
& \underset{\text { states }}{L_{n}: O(n)} \underset{\exp }{1-\text { LA }} \text { DFA } \underset{\substack{L_{n}: \geq n^{2^{n}} \\
\text { states }}}{\exp \exp } \\
& L_{n}: \geq \underset{\text { exp }(n)}{\exp } \text { det-1-LA }
\end{aligned}
$$

Corollary

Removing nondeterminism from 1-LAs requires exponentially many states

Cfr. Sakoda and Sipser question [Sakoda\&Sipser '78]:
How much it costs in states to remove nondeterminism from two-way finite automata?

Strongly Limited Automata

Different Restrictions

- Dyck languages are accepted without fully using capabilities of 2-limited automata
- Chomsky-Schützenberger Theorem: Recognition of CFLs can be reduced to recognition of Dyck languages

Question

Is it possible to restrict 2-limited automata without affecting their computational power?

Forgetting Automata [Jancar\&Mráz\&Plátek '96]

- The content of any cell can be erased in the 1st or 2 nd visit (using a fixed symbol)
- No other changes of the tape are allowed

Strongly Limited Automata
 [P.'15]

- Model inspired by the algorithm used by 2-limited automata to recognize Dyck languages
- Restrictions on

■ state changes
■ head reversals

- rewriting operations

Dyck Language Recognition

\square

- Moves to the right:
- to search a closed bracket
- Moves to the left:
- to search an open bracket One state for each type of bracket!
- to check the tape content in the final scan from right to left
- Rewritings:
- each closed bracket is rewritten in the first visit
- each open bracket is rewritten in the second visit
- no rewritings in the final scan

Strongly Limited Automata

- Alphabet
Σ input
「 working
- States and moves
q_{0} initial state, moving from left to right
\rightarrow move to the right
${ }_{q}{ }^{X}$ write $X \in \Gamma$, enter state $q \in Q_{L}$, turn to the left
Q_{L} moving from right to left
+-- move to the left
$\stackrel{X}{\longleftrightarrow} \quad$ write X, do not change state, move to the left
$\xrightarrow[q_{0}]{ }$ write X, enters state q_{0}, turn to the right
Q_{\curlyvee} final scan
when \triangleleft is reached move from right to left and test the membership of the tape content to a "local" language

Strongly Limited Automata: Palindromes

$$
\begin{aligned}
& \Sigma=\{a, b\}, \Gamma=\{X, Y, Z\} \\
& q_{0} \\
& Q_{L}=\left\{q_{a}, q_{b}\right\}
\end{aligned}
$$

Transitions:
$q_{0} \quad \rightarrow \quad$ move to the right other possibility in cell not yet rewritten: $q_{\sigma}{ }^{X}$ write $X \in \Gamma$, enter state $q_{\sigma} \in Q_{L}$, turn to the left
q_{σ} moving from right to left
cells already rewritten: \&-- move to the left
cells containing $\gamma \in\{a, b\}$, nondeterministically select between:
$\stackrel{Z}{\longleftarrow}$ write Z , do not change state, move to the left
$\stackrel{Y}{\hookrightarrow} q_{0}$ write Y , enters state q_{0}, turn to the right (only if $\gamma=\sigma$)

Strongly Limited Automata: Palindromes

$$
\begin{aligned}
& \Sigma=\{a, b\}, \Gamma=\{X, Y, Z\} \\
& q_{0} \\
& Q_{L}=\left\{q_{a}, q_{b}\right\}
\end{aligned}
$$

Final phase:

- The string between the end-markers should belong to

$$
Y^{*} Z X^{*}+Y^{*} X^{*}
$$

with the exceptions of inputs of length ≤ 1

- The following two-letter factors are allowed:

$$
\begin{array}{ccccccc}
\triangleright Y & Y Y & Y Z & Z X & Y X & X X & X \triangleleft \\
\triangleright a & \triangleright b & a \triangleleft & b \triangleleft & \triangleright \triangleleft & &
\end{array}
$$

Strongly Limited Automata

- Computational power: same as 2-limited automata (CFLs)
- Descriptional power: the sizes of equivalent
- CFGs
- PDAs
- strongly limited automata are polynomially related
- 2-limited automata can be exponentially smaller
- CFLs \rightarrow strongly limited automata: conversion from CFGs which heavily uses nondeterminism

Determinism vs Nondeterminism

What is the power of deterministic strongly limited automata?

- Each deterministic strongly limited automaton can be simulated by a deterministic 2-LA
- Deterministic languages as

$$
\begin{aligned}
& L_{1}=\left\{c a^{n} b^{n} \mid n \geq 0\right\} \cup\left\{d a^{2 n} b^{n} \mid n \geq 0\right\} \\
& L_{2}=\left\{a^{n} b^{2 n} \mid n \geq 0\right\}
\end{aligned}
$$

are not accepted by deterministic strongly limited automata
Proper subclass of deterministic context-free languages

Determinism vs Nondeterminism: a Small Change

- Moving to the right, a strongly limited automaton can use only q_{0}
- A possible modification:
a set of states Q_{R} used while moving to the right
- the simulation by PDAs remains polynomial
- $L_{1}=\left\{c a^{n} b^{n} \mid n \geq 0\right\} \cup\left\{d a^{2 n} b^{n} \mid n \geq 0\right\}$ $L_{2}=\left\{a^{n} b^{2 n} \mid n \geq 0\right\}$
are accepted by deterministic devices

Problem
 What is the class of languages accepted by the deterministic version of devices so obtained?

Final Remarks

Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted
starting from the first active visit
[Wechsung '75]
ret-c(1): regular languages
ret-c(d), $d \geq 2$: context-free languages
ret-c(2) deterministic: not comparable with DCFLs

Dual Return Complexity

Maximum number of visits to a tape cell
counted up to the last active visit $\quad \operatorname{dret}-\mathrm{c}(d) \equiv d$-limited automata

$$
\begin{array}{r}
\operatorname{ret}-\mathrm{c}(f(n))=\operatorname{dret-c}(f(n))=1 \operatorname{AuxPDA}(f(n)) \\
\\
{[\text { Wechsung\&Brandstädt' '79] }}
\end{array}
$$

Thank you for your attention!

