Restricted Turing Machines and Language Recognition

Giovanni Pighizzini

Dipartimento di Informatica Università degli Studi di Milano, Italy

> LATA 2016 – Prague March 14-18, 2016

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Part I: Fast One-Tape Turing Machines Hennie Machines & C

Part II: One-Tape Turing Machines with Rewriting Restrictions Limited Automata & C

ション ふゆ アメリア メリア しょうくしゃ

The Chomsky Hierarchy

(One-tape) Turing Machines		t	ype 0
Linear Bounded Automata		type 3	1
Pushdown Automata	typ	pe 2	
Finite Automata	type 3		

The Chomsky Hierarchy

(One-tape) Turing Machines		t	ype 0
Linear Bounded Automata		type	1
Pushdown Automata	typ	be 2	
"Hennie Machines"	type 3		

Part II: One-Tape TMs with Rewriting Restrictions

Outline

Limited automata

- Equivalence with CFLs
- Determinism vs nondeterminism
- Descriptional complexity aspects
- 1-limited automata and regular languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Limited automata
- Equivalence with CFLs
- Determinism vs nondeterminism
- Descriptional complexity aspects
- 1-limited automata and regular languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Limited automata
- Equivalence with CFLs
- Determinism vs nondeterminism
- Descriptional complexity aspects
- 1-limited automata and regular languages

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Limited automata
- Equivalence with CFLs
- Determinism vs nondeterminism
- Descriptional complexity aspects
- 1-limited automata and regular languages

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Limited automata
- Equivalence with CFLs
- Determinism vs nondeterminism
- Descriptional complexity aspects
- 1-limited automata and regular languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- Limited automata
- Equivalence with CFLs
- Determinism vs nondeterminism
- Descriptional complexity aspects
- 1-limited automata and regular languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

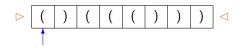
Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

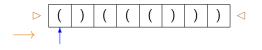
which is allowed to rewrite the content of each tape cell only in the first d visits

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@



・ロト ・ 日 ・ モート ・ 田 ・ うへで

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

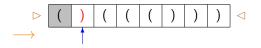


(i) Move to the right to search a closed parenthesis

- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - の Q @

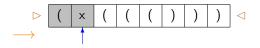
- (iv) Rewrite it by x
- (v) Repeat from the beginning



(i) Move to the right to search a closed parenthesis(ii) Rewrite it by x

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

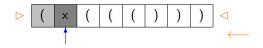
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning



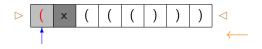
(i) Move to the right to search a closed parenthesis (ii) Rewrite it by ${\sf x}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

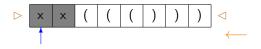
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning



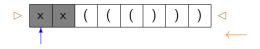
- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning



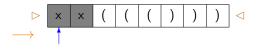
- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning



- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

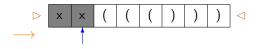


- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning



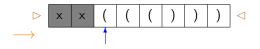
- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning



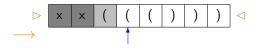
- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning



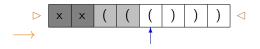
- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning



- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning



- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

$$\xrightarrow{}$$

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- (iv) Rewrite it by x
- (v) Repeat from the beginning

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

$$\begin{tabular}{|c|c|c|c|c|c|} \hline \ & \mathbf{x} & $\mathbf{x}$$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- (iv) Rewrite it by x
- (v) Repeat from the beginning

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and *accept* iff all tape cells contain x (iii') If in (iii) the left end of the tape is reached then *reject*

ション ふゆ く 山 マ チャット しょうくしゃ

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

ション ふゆ く 山 マ チャット しょうくしゃ

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

ション ふゆ く 山 マ チャット しょうくしゃ

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

$$\begin{tabular}{|c|c|c|c|c|c|} \hline \ & \mathbf{x} & $\mathbf{x}$$$

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

$$\begin{tabular}{|c|c|c|c|c|c|} \hline & \mathbf{x} &$$

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and accept iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then reject

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and *accept* iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then *reject*

- (i) Move to the right to search a closed parenthesis
- (ii) Rewrite it by x
- (iii) Move to the left to search an open parenthesis
- (iv) Rewrite it by x
- (v) Repeat from the beginning

Special cases:

(i') If in (i) the right end of the tape is reached then scan all the tape and *accept* iff all tape cells contain x
(iii') If in (iii) the left end of the tape is reached then *reject*

Each cell is rewritten only in the first 2 visits!

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \ge 1$, a *d*-limited automaton is

a one-tape Turing machine

which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- ► For each d ≥ 2, d-limited automata characterize context-free languages [Hibbard '67]
- 1-limited automata characterize regular languages [Wagner&Wechsung '86]

The Chomsky Hierarchy

(One-tape) Turing Machines		t	ype 0
Linear Bounded Automata		type 3	1
Pushdown Automata	typ	pe 2	
Finite Automata	type 3		

The Chomsky Hierarchy

(One-tape) Turing Machines		ty	pe 0
Linear Bounded Automata	t	ype 1	
d-Limited Automata ($d \ge 2$)	type	2	
Finite Automata	type 3		

The Chomsky Hierarchy

(One-tape) Turing Machines	type	e 0
Linear Bounded Automata	type 1	
d-Limited Automata ($d \ge 2$)	type 2	
1-Limited Automata	type 3	

Why Each CFL is Accepted by a 2-LA [P.&Pisoni '14]

Main tool:

Theorem ([Chomsky&Schützenberger '63]) Every context-free language $L \subseteq \Sigma^*$ can be expressed as

 $L = h(D_k \cap R)$

ション ふゆ く 山 マ チャット しょうくしゃ

where, for $\Omega_k = \{(1,)_1, (2,)_2, \dots, (k,)_k\}$:

- $D_k \subseteq \Omega_k^*$ is a Dyck language
- $R \subseteq \Omega_k^*$ is a regular language
- $h: \Omega_k \to \Sigma^*$ is an homomorphism

Furthermore, it is possible to restrict to *non-erasing* homomorphisms [Okhotin '12] Main tool:

Theorem ([Chomsky&Schützenberger '63]) Every context-free language $L \subseteq \Sigma^*$ can be expressed as

 $L = h(D_k \cap R)$

where, for $\Omega_k = \{(1,)_1, (2,)_2, \dots, (k,)_k\}$:

- $D_k \subseteq \Omega_k^*$ is a Dyck language
- $R \subseteq \Omega_k^*$ is a regular language
- $h: \Omega_k \to \Sigma^*$ is an homomorphism

Furthermore, it is possible to restrict to *non-erasing* homomorphisms [Okhotin '12]

L context-free language, with $L = h(D_k \cap R)$

• T nondeterministic transducer computing h^{-1}

ション ふゆ く 山 マ チャット しょうくしゃ

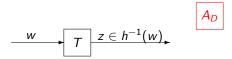
- A_D 2-LA accepting the Dyck language D_k
- A_R finite automaton accepting R

$$\xrightarrow{w} T z \in h^{-1}(w)$$

- *L* context-free language, with $L = h(D_k \cap R)$
 - ► T nondeterministic transducer computing h⁻¹

ション ふゆ く 山 マ チャット しょうくしゃ

- A_D 2-LA accepting the Dyck language D_k
- A_R finite automaton accepting R

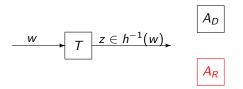


L context-free language, with $L = h(D_k \cap R)$

► T nondeterministic transducer computing h⁻¹

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- A_D 2-LA accepting the Dyck language D_k
- A_R finite automaton accepting R

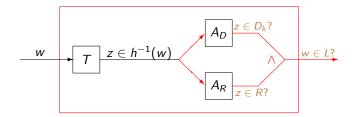


L context-free language, with $L = h(D_k \cap R)$

T nondeterministic transducer computing h⁻¹

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

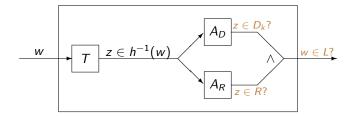
- A_D 2-LA accepting the Dyck language D_k
- A_R finite automaton accepting R

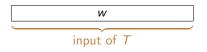


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

L context-free language, with $L = h(D_k \cap R)$

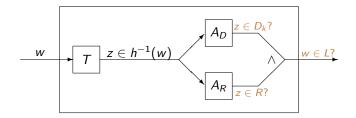
- T nondeterministic transducer computing h⁻¹
- A_D 2-LA accepting the Dyck language D_k
- A_R finite automaton accepting R





 $z = \sigma_1 \sigma_2 \cdots \sigma_k \in h^{-1}(w)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

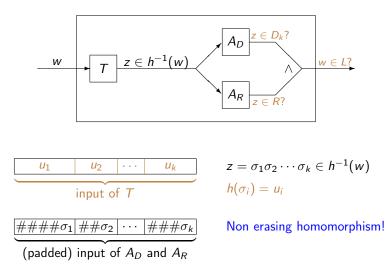


 $z = \sigma_1 \sigma_2 \cdots \sigma_k \in h^{-1}(w)$ $h(\sigma_i) = u_i$

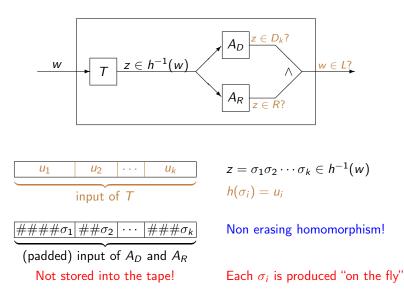
 $####\sigma_1 ##\sigma_2 \cdots ####\sigma_k$

Non erasing homomorphism!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

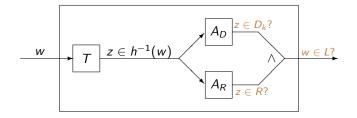


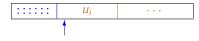
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?



・ロト ・個ト ・モト ・モト

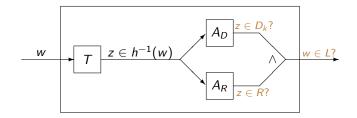
æ



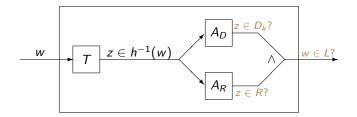


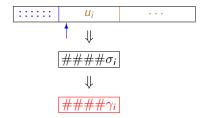
 $w = \cdots u_i \cdots$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

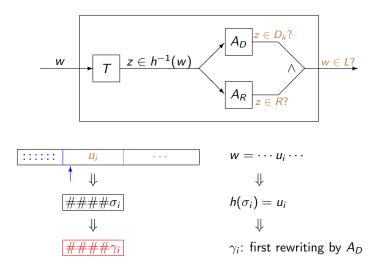


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?



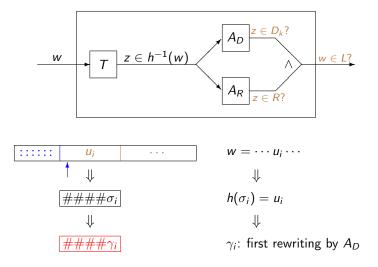


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

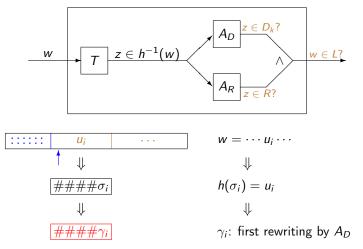


• On the tape, u_i is replaced directly by $####\gamma_i$

• One move of A_R on input σ_i is also simulated



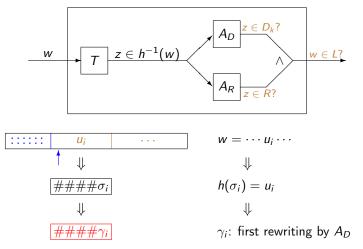
- On the tape, u_i is replaced directly by $####\gamma_i$
- One move of A_R on input σ_i is also simulated



- On the tape, u_i is replaced directly by $####\gamma_i$
- One move of A_R on input σ_i is also simulated

The resulting machine is a 2-LA recognizing the given CEL

э



- On the tape, u_i is replaced directly by $####\gamma_i$
- One move of A_R on input σ_i is also simulated

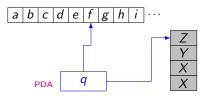
The resulting machine is a 2-LA recognizing the given CEL

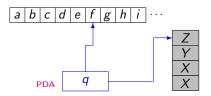
э

PDAs vs Limited Automata

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

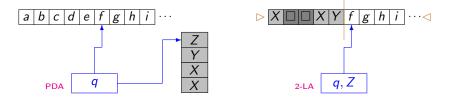




Normal form for (D)PDAs:

at each step, the stack height increases at most by 1

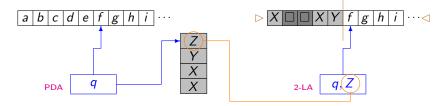
• ϵ -moves cannot push on the stack



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

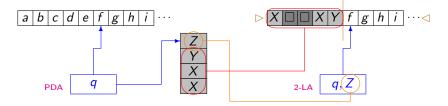
Normal form for (D)PDAs:

- at each step, the stack height increases at most by 1
- ϵ -moves cannot push on the stack



Normal form for (D)PDAs:

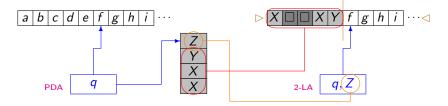
- at each step, the stack height increases at most by 1
- ϵ -moves cannot push on the stack



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Normal form for (D)PDAs:

- at each step, the stack height increases at most by 1
- ϵ -moves cannot push on the stack



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

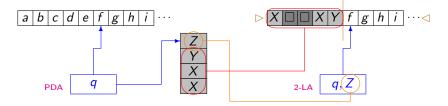
ъ

Normal form for (D)PDAs:

- at each step, the stack height increases at most by 1
- ϵ -moves cannot push on the stack

Each PDA can be simulated by an equivalent 2-LA

- Polynomial size
- Determinism is preserved



ъ

イロト イポト イヨト イヨト

Normal form for (D)PDAs:

- at each step, the stack height increases at most by 1
- ϵ -moves cannot push on the stack

Each PDA can be simulated by an equivalent 2-LA

- Polynomial size
- Determinism is preserved

Simulation of 2-Limited Automata by Pushdown Automata

Problem

What about the converse simulation, namely that of 2-LAs by PDAs?

[Hibbard '67] Original simulation

P.&Pisoni '15

Reformulation

Exponential cost

Determinism is preserved (extra costs)

Simulation of 2-Limited Automata by Pushdown Automata

Problem

What about the converse simulation, namely that of 2-LAs by PDAs?

[Hibbard '67] Original simulation

- 日本 - (理本 - (日本 - (日本 - 日本

P.&Pisoni '15

Reformulation

Exponential cost

Determinism is preserved (extra costs)

Simulation of 2-Limited Automata by Pushdown Automata

Problem

What about the converse simulation, namely that of 2-LAs by PDAs?

[Hibbard '67] Original simulation

[P.&Pisoni '15]

ション ふゆ く 山 マ チャット しょうくしゃ

Reformulation

- Exponential cost
- Determinism is preserved (extra costs)

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_w

w is a "frozen" string

(ロ) (型) (E) (E) (E) (O)

$$au_{\mathsf{w}} \subseteq \mathsf{Q} imes \{-1,+1\} imes \mathsf{Q} imes \{-1,+1\}$$

 $(q, d', p, d'') \in \tau_w$ iff M on a tape segment containing w has a computation path:

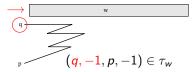
- entering the segment in q from d'
- exiting the segment in p to d''
- left = -1, right = +1

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_w

w is a "frozen" string

$$au_{\mathsf{w}} \subseteq \mathsf{Q} imes \{-1,+1\} imes \mathsf{Q} imes \{-1,+1\}$$



 $(q, d', p, d'') \in \tau_w$ iff *M* on a tape segment containing *w* has a computation path:

- entering the segment in q from d'
- exiting the segment in p to d''

left =
$$-1$$
, right = $+1$

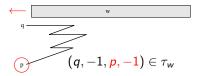
Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_w

w is a "frozen" string

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

$$au_{\mathsf{w}} \subseteq \mathsf{Q} imes \{-1,+1\} imes \mathsf{Q} imes \{-1,+1\}$$



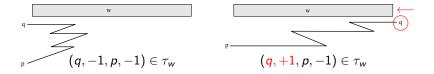
 $(q, d', p, d'') \in \tau_w$ iff M on a tape segment containing w has a computation path:

- entering the segment in q from d'
- exiting the segment in p to d''
- left = -1, right = +1

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_w w is a "frozen" string

$$au_w \subseteq Q imes \{-1,+1\} imes Q imes \{-1,+1\}$$



 $(q, d', p, d'') \in \tau_w$ iff *M* on a tape segment containing *w* has a computation path:

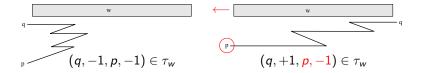
- entering the segment in q from d'
- exiting the segment in p to d''

left =
$$-1$$
, right = $+1$

Transition Tables of 2-LAs

- Fixed a 2-limited automaton
- Transition table τ_w w is a "frozen" string

$$\tau_{w} \subseteq Q \times \{-1, +1\} \times Q \times \{-1, +1\}$$



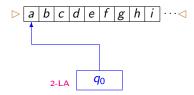
 $(q, d', p, d'') \in \tau_w$ iff M on a tape segment containing w has a computation path:

• entering the segment in q from d'

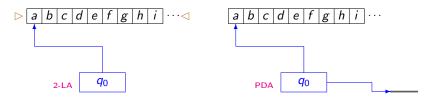
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- exiting the segment in p to d''
- left = -1, right = +1

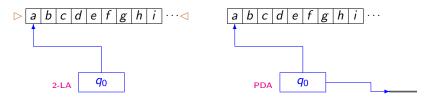
Initial configuration



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

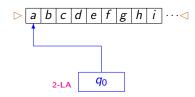


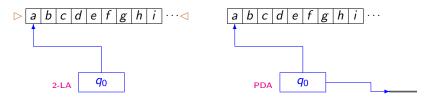
▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで



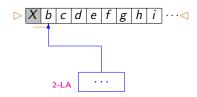
. . .

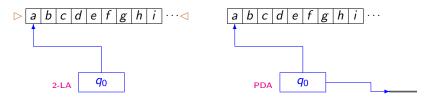
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



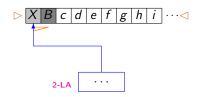


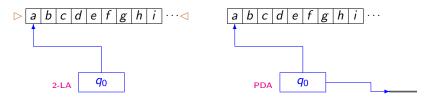
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



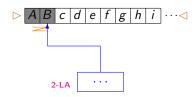


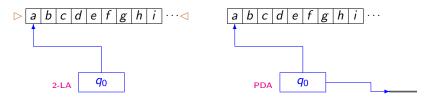
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●





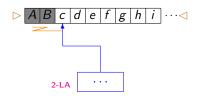
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

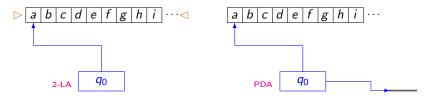




. . .

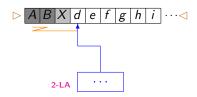
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

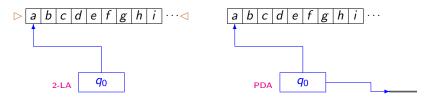




. . .

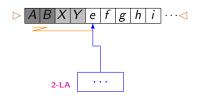
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

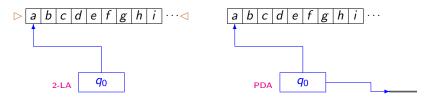




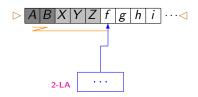
. . .

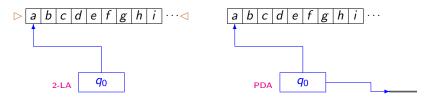
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



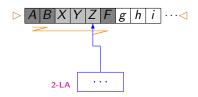


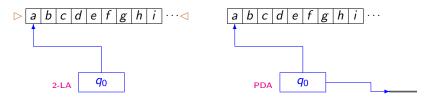
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

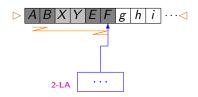


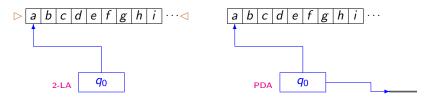


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

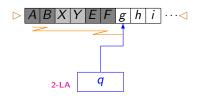


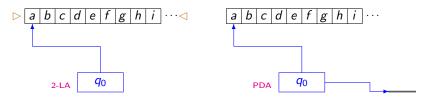




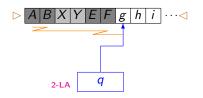


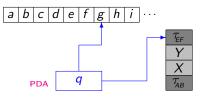
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



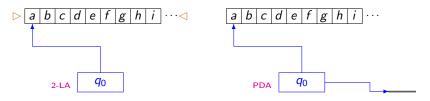


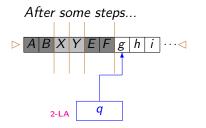
After some steps...

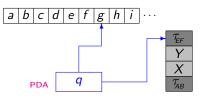




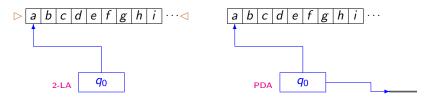
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で

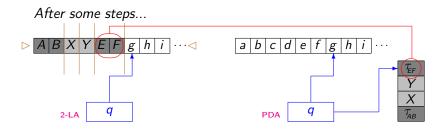






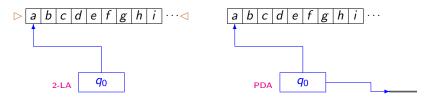
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

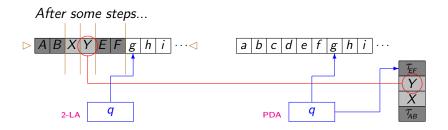




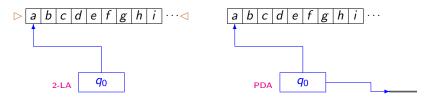
(a)

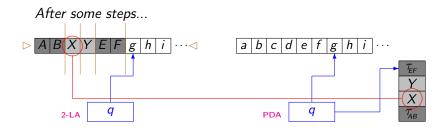
ж





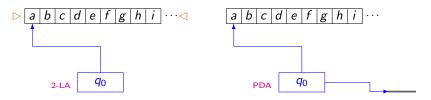
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

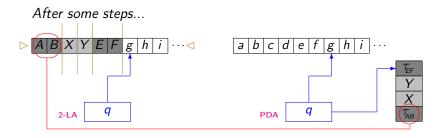


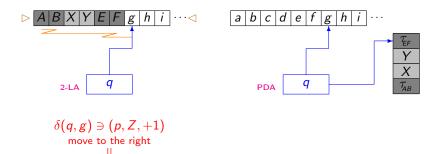


イロト イポト イヨト イヨト

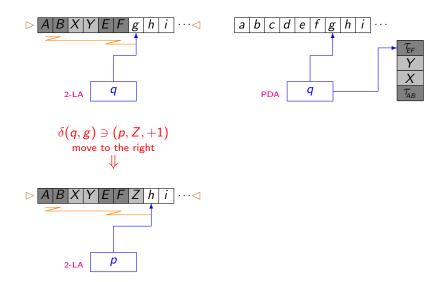
Э



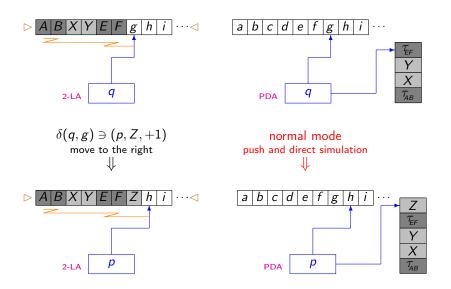




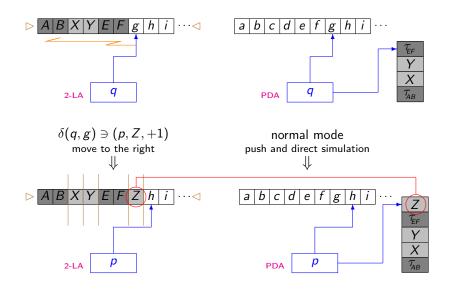
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで



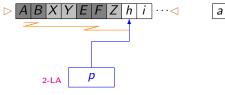
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

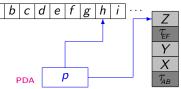


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - の々で



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

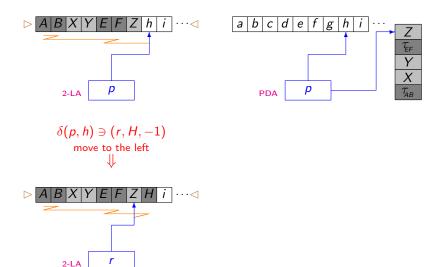




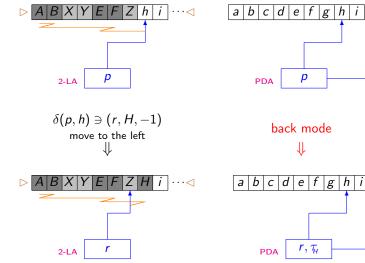
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

$$\delta(p,h) \ni (r,H,-1)$$

move to the left
$$\Downarrow$$



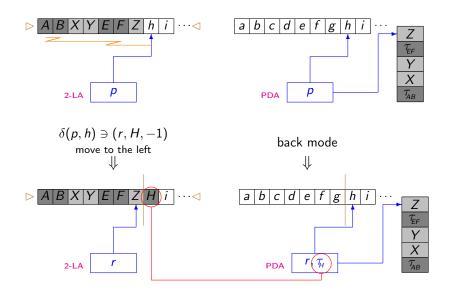
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・



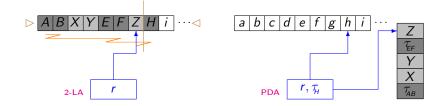
X τ_{AB}

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

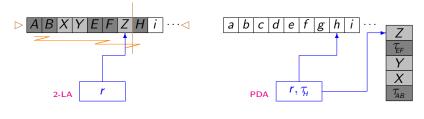
Ζ τ_{EF} Y X τ_{AB}



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



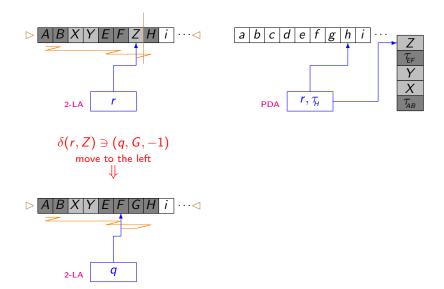
▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?



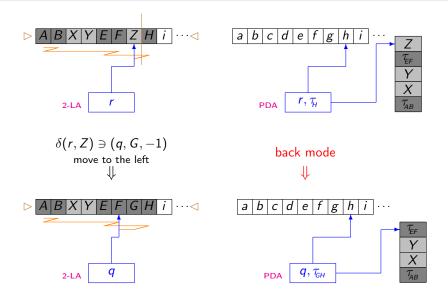
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

$$\delta(r,Z) \ni (q,G,-1)$$

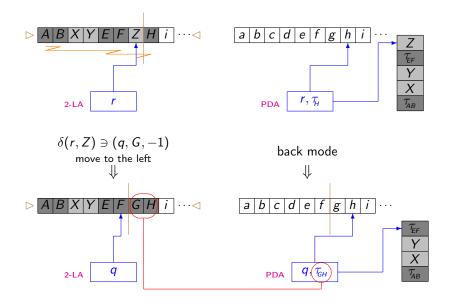
move to the left



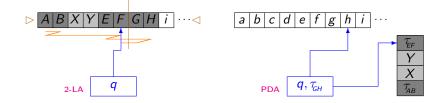
▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - の々ぐ



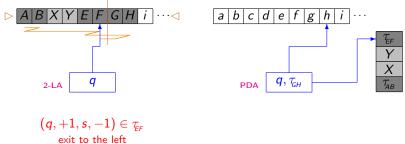
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

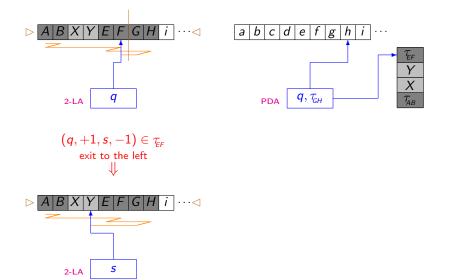


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

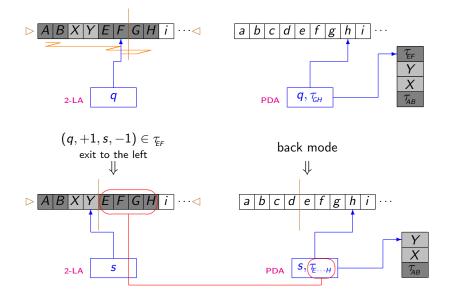
exit to the left



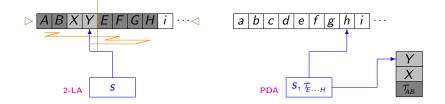
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

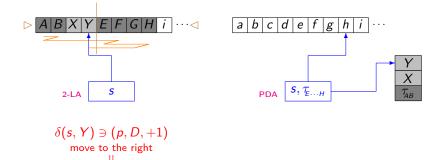


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

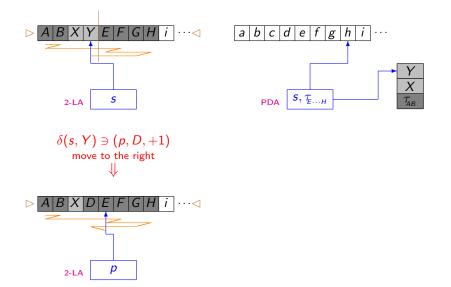


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

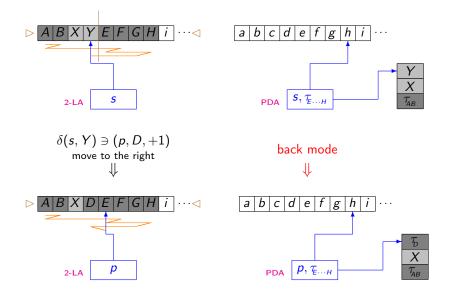




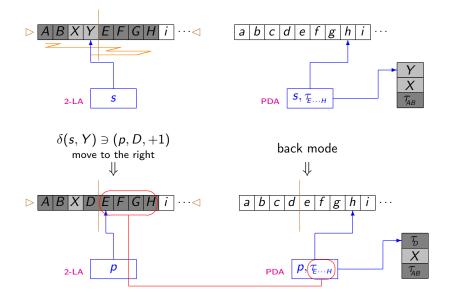
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



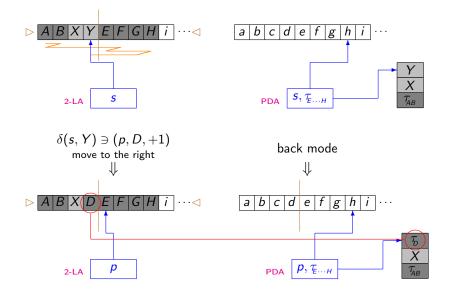
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



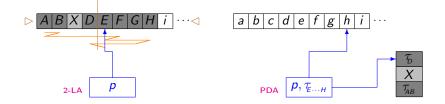
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

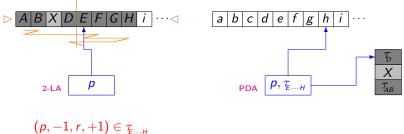


▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで



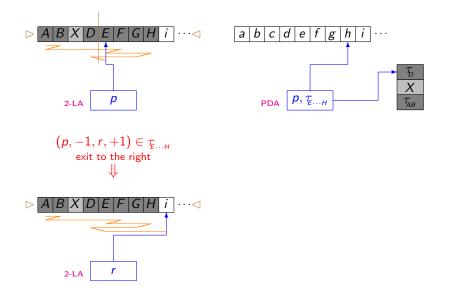
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで



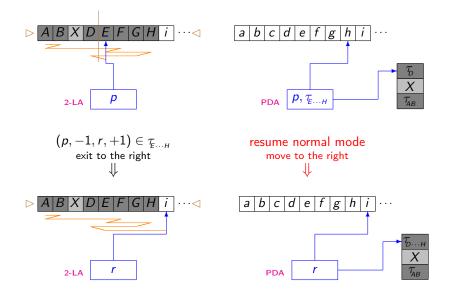


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

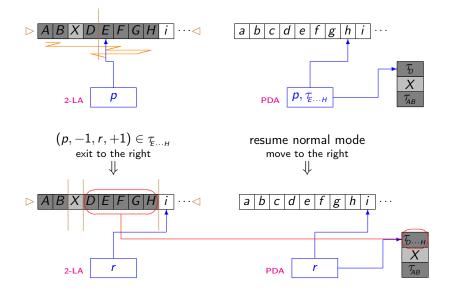
 $(p, -1, r, +1) \in \gamma_{E \cdots H}$ exit to the right \Downarrow



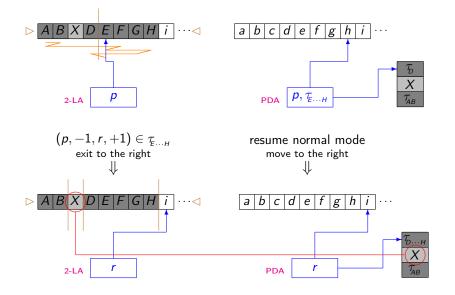
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで



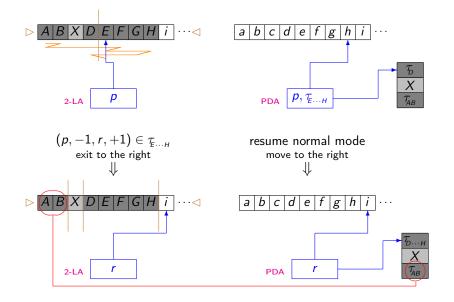
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - のへで

Summing up...

Given a 2-LA M with:

- n states
- m symbol working alphabet

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summing up...

Given a 2-LA M with:

• *n* states At most 2^{4n^2} many different tables!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

m symbol working alphabet

Summing up...

- Given a 2-LA M with:
 - n states
 - m symbol working alphabet

Resulting PDA:

States
 Normal mode: states of M
 Back mode: (q, τ)
 q state of M, τ transition table

States $2n(2^{4n^2}+1)+1$

ション ふゆ く 山 マ チャット しょうくしゃ

At most 2^{4n^2} many different tables!

Summing up...

- Given a 2-LA *M* with:
 - n states
 - m symbol working alphabet

Resulting PDA:

- States
 Normal mode: states of M
 Back mode: (q, τ)
 q state of M, τ transition table
- Pushdown symbols
 - Tape symbols of M
 - Transition tables

At most 2^{4n^2} many different tables!

States $2n(2^{4n^2}+1)+1$

Pushdown symbols $m + 2^{4n^2}$

Summing up...

- Given a 2-LA *M* with:
 - n states
 - m symbol working alphabet

Resulting PDA:

- States
 Normal mode: states of M
 Back mode: (q, τ)
 q state of M, τ transition table
- Pushdown symbols
 - Tape symbols of M
 - Transition tables
- Each move can increase the stack height at most by 1

At most 2^{4n^2} many different tables!

States $2n(2^{4n^2}+1)+1$

Pushdown symbols $m + 2^{4n^2}$

・ロット 本語 ア 本語 ア 本語 ア キロマ

Summing up...

- Given a 2-LA M with:
 - n states
 - m symbol working alphabet

Resulting PDA:

- States
 Normal mode: states of M
 Back mode: (q, τ)
 q state of M, τ transition table
- Pushdown symbols
 - Tape symbols of M
 - Transition tables
- Each move can increase the stack height at most by 1

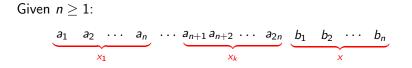
At most 2^{4n^2} many different tables!

States $2n(2^{4n^2}+1)+1$

Pushdown symbols $m + 2^{4n^2}$

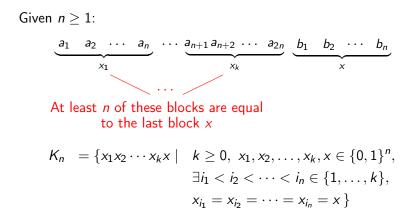
```
\begin{array}{c} 2\text{-LAs} \rightarrow \text{PDAs} \\ \text{Exponential cost} \\ \hline \end{array}
```

Given $n \ge 1$:

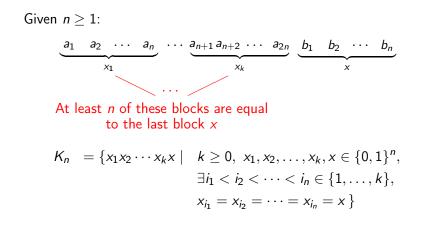


$$K_n = \{x_1 x_2 \cdots x_k x \mid k \ge 0, x_1, x_2, \dots, x_k, x \in \{0, 1\}^n, \}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

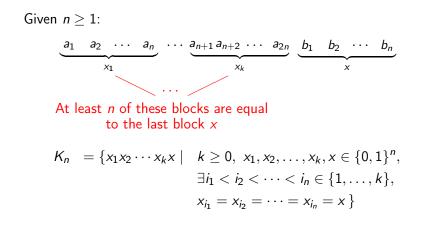


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

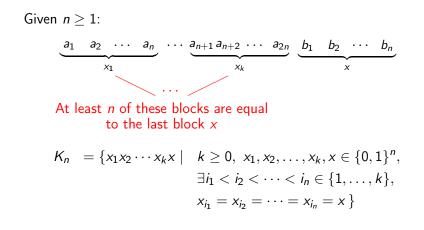


Example (n = 3): 001110011110110111110

ション ふゆ く 山 マ ふ し マ うくの



Example (n = 3): 0 0 1 | 1 1 0 | 0 1 1 | 1 1 0 | 1 1 0 | 1 1 1 | 1 1 0



$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 1\ 0\ (n=3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

1. Scan all the tape from left to right

- 2. Start to move to the left and mark the rightmost *n* symbols
- 3. Compare each block of length *n* (from the right), symbol by symbol, with the last block
- 4. When the left end of the tape is reached accept if and only if the number of block equal to the last one is $\geq n$

How to Recognize K_n

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- 1. Scan all the tape from left to right
- 2. Start to move to the left and mark the rightmost *n* symbols
- 3. Compare each block of length *n* (from the right), symbol by symbol, with the last block
- 4. When the left end of the tape is reached accept if and only if the number of block equal to the last one is $\geq n$

$$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ x \times \times \hat{1}\ \hat{1}\ \hat{0} \qquad (n=3)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- 1. Scan all the tape from left to right
- 2. Start to move to the left and mark the rightmost *n* symbols
- 3. Compare each block of length *n* (from the right), symbol by symbol, with the last block
- 4. When the left end of the tape is reached accept if and only if the number of block equal to the last one is $\geq n$

$$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ x \times \times \hat{1}\ \hat{1}\ \hat{0} \qquad (n=3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. Scan all the tape from left to right
- 2. Start to move to the left and mark the rightmost *n* symbols
- 3. Compare each block of length *n* (from the right), symbol by symbol, with the last block
- 4. When the left end of the tape is reached accept if and only if the number of block equal to the last one is $\geq n$

- 1. Scan all the tape from left to right
- 2. Start to move to the left and mark the rightmost *n* symbols
- 3. Compare each block of length *n* (from the right), symbol by symbol, with the last block
- 4. When the left end of the tape is reached accept if and only if the number of block equal to the last one is $\geq n$

Complexity:

- ► K_n is accepted by a deterministic 2-LA with O(n²) states and a fixed working alphabet
- Each PDA accepting K_n has size at least exponential in n (Proof based on the *interchange lemma* for CFLs)

$$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ x \times \times \hat{1}\ \hat{1}\ \hat{0} \qquad (n=3)$$

- 1. Scan all the tape from left to right
- 2. Start to move to the left and mark the rightmost *n* symbols
- 3. Compare each block of length *n* (from the right), symbol by symbol, with the last block
- 4. When the left end of the tape is reached accept if and only if the number of block equal to the last one is $\geq n$

Complexity:

- ► K_n is accepted by a deterministic 2-LA with O(n²) states and a fixed working alphabet
- Each PDA accepting K_n has size at least exponential in n (Proof based on the *interchange lemma* for CFLs)

Cost of the simulation

Exponential size for the simulation of 2-LAs by PDAs

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Optimal

Computational Power of Limited Automata

From the simulations:

• 2-Limited Automata \equiv CFLs

What about *d*-Limited Automata, with d > 2?

- They are still characterize CFLs [Hibbard '67]
- They can be simulated by exponentially larger PDAs [Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?

▷ Regular languages

[Wagner&Wechsung '86]

Computational Power of Limited Automata

From the simulations:

• 2-Limited Automata \equiv CFLs

What about *d*-Limited Automata, with d > 2?

They are still characterize CFLs [Hibbard '67]
 They can be simulated by exponentially larger PDAs [Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?

▷ Regular languages

[Wagner&Wechsung '86]

Computational Power of Limited Automata

From the simulations:

▶ 2-Limited Automata ≡ CFLs

What about *d*-Limited Automata, with d > 2?

They are still characterize CFLs

[Hibbard '67]

 They can be simulated by exponentially larger PDAs [Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?

Regular languages

[Wagner&Wechsung '86]

From the simulations:

▶ 2-Limited Automata ≡ CFLs

What about *d*-Limited Automata, with d > 2?

They are still characterize CFLs

[Hibbard '67]

 They can be simulated by exponentially larger PDAs [Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?

Regular languages

[Wagner&Wechsung '86]

From the simulations:

▶ 2-Limited Automata ≡ CFLs

What about *d*-Limited Automata, with d > 2?

- They are still characterize CFLs [Hibbard '67]
- They can be simulated by exponentially larger PDAs [Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?

Regular languages

[Wagner&Wechsung '86]

From the simulations:

▶ 2-Limited Automata ≡ CFLs

What about *d*-Limited Automata, with d > 2?

- They are still characterize CFLs [Hibbard '67]
- They can be simulated by exponentially larger PDAs
 - [Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?

Regular languages

[Wagner&Wechsung '86]

- Determinism is preserved by the exponential simulation of 2-limited automata by PDAs provided that the input of the PDA is right end-marked
- Without end-marker: double exponential simulation
- Conjecture: this cost cannot be reduced
- The converse simulation also preserve determinsm

Deterministic 2-Limited Automata \equiv DCFLs [P.&Pisoni '15]

- Determinism is preserved by the exponential simulation of 2-limited automata by PDAs provided that the input of the PDA is right end-marked
- ► Without end-marker: double exponential simulation
- Conjecture: this cost cannot be reduced
- The converse simulation also preserve determinsm

Deterministic 2-Limited Automata ≡ DCFLs [P.&Pisoni '15]

ション ふゆ アメリア メリア しょうくしゃ

- Determinism is preserved by the exponential simulation of 2-limited automata by PDAs provided that the input of the PDA is right end-marked
- Without end-marker: double exponential simulation
- Conjecture: this cost cannot be reduced
- The converse simulation also preserve determinsm

Deterministic 2-Limited Automata ≡ DCFLs [P.&Pisoni '15]

ション ふゆ アメリア メリア しょうくしゃ

- Determinism is preserved by the exponential simulation of 2-limited automata by PDAs provided that the input of the PDA is right end-marked
- Without end-marker: double exponential simulation
- Conjecture: this cost cannot be reduced
- ► The converse simulation also preserve determinsm

Deterministic 2-Limited Automata \equiv DCFLs [P.&Pisoni'1

- Determinism is preserved by the exponential simulation of 2-limited automata by PDAs provided that the input of the PDA is right end-marked
- Without end-marker: double exponential simulation
- Conjecture: this cost cannot be reduced
- The converse simulation also preserve determinsm

Deterministic 2-Limited Automata ≡ DCFLs [P.&Pisoni '15]

(ロ) (型) (E) (E) (E) (O)

What about *deterministic d*-Limited Automata, d > 2?

- L = {aⁿbⁿc | n ≥ 0} ∪ {aⁿb²ⁿd | n ≥ 0} is accepted by a *deterministic* 3-LA, but is not a DCFL
- Infinite hierarchy

[Hibbard '67]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d = 3)-limited automaton

What about *deterministic* d-Limited Automata, d > 2?

- ► $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$ is accepted by a *deterministic* 3-LA, but is not a DCFL
- Infinite hierarchy

[Hibbard '67]

ション ふゆ アメリア メリア しょうくしゃ

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic d*-Limited Automata, d > 2?

• $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$

is accepted by a deterministic 3-LA, but is not a DCFL

Infinite hierarchy

[Hibbard '67]

ション ふゆ く 山 マ チャット しょうくしゃ

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

What about *deterministic d*-Limited Automata, d > 2?

• $L = \{a^n b^n c \mid n \ge 0\} \cup \{a^n b^{2n} d \mid n \ge 0\}$

is accepted by a deterministic 3-LA, but is not a DCFL

Infinite hierarchy

[Hibbard '67]

ション ふゆ く 山 マ チャット しょうくしゃ

For each $d \ge 2$ there is a language which is accepted by a deterministic d-limited automaton and that cannot be accepted by any deterministic (d - 1)-limited automaton

1-Limited Automata

◆□ > < 個 > < E > < E > E 9 < 0</p>

Main idea: transformation of *two-way* NFAs into *one-way* DFAs [Shepherdson '59]

- First visit to a cell: direct simulation
- Further visits: transition tables

▶ Finite control of the DFA which simulates the two-way NFA:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 transition table of the already scanned input prefix set of possible current states

Main idea: transformation of *two-way* NFAs into *one-way* DFAs [Shepherdson '59]

- First visit to a cell: direct simulation
- Further visits: transition tables

▶ Finite control of the DFA which simulates the two-way NFA:

 transition table of the already scanned input prefix set of possible current states

Main idea: transformation of *two-way* NFAs into *one-way* DFAs [Shepherdson '59]

- First visit to a cell: direct simulation
- ► Further visits: transition tables for $x \in \Sigma^*$, $\tau_x \subseteq Q \times Q$: $(p,q) \in \tau_x$ iff $x \xrightarrow{p} q$

Finite control of the DFA which simulates the two-way NFA:

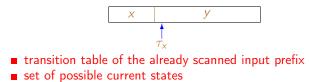
(日) (四) (日) (日) (日)

transition table of the already scanned input prefix
 set of possible current states

Main idea: transformation of *two-way* NFAs into *one-way* DFAs [Shepherdson '59]

- First visit to a cell: direct simulation
- ► Further visits: transition tables for $x \in \Sigma^*$, $\tau_x \subseteq Q \times Q$: $(p,q) \in \tau_x$ iff $x \xrightarrow{p} q$

Finite control of the DFA which simulates the two-way NFA:



Simulation of 1-LAs:

[Wagner&Wechsung '86]

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

The transition table depends on the string used to rewrite the input prefix x

▶ This string was nondeterministically chosen by the 1-LA

Simulation of 1-LAs:

[Wagner&Wechsung '86]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

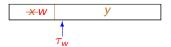
The transition table depends on the string used to rewrite the input prefix x

▶ This string was nondeterministically chosen by the 1-LA

Simulation of 1-LAs:

[Wagner&Wechsung '86]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



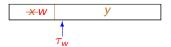
The transition table depends on the string used to rewrite the input prefix x

▶ This string was nondeterministically chosen by the 1-LA

Simulation of 1-LAs:

[Wagner&Wechsung '86]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで



The transition table depends on the string used to rewrite the input prefix x

This string was nondeterministically chosen by the 1-LA

Simulation of 1-LAs:

[Wagner&Wechsung '86]

ション ふゆ アメリア メリア しょうくしゃ

- The transition table depends on the string used to rewrite the input prefix x
- This string was nondeterministically chosen by the 1-LA

The simulating DFA keeps in its finite control a sets of transition tables

Theorem

Let M be a 1-LA with n states.

- ▶ There exists an equivalent DFA with 2^{n·2^{n²}} states.
- There exists an equivalent NFA with n · 2^{n²} states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot (n+1)^n$ states.

	DFA	NFA
nondet. 1-LA		
det. 1-LA		

These upper bounds do not depend on the alphabet size of *M*! The gaps are optimal!

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Theorem

Let M be a 1-LA with n states.

► There exists an equivalent DFA with 2^{n·2^{n²}} states.

There exists an equivalent NFA with n · 2^{n²} states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot (n+1)^n$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	
det. 1-LA		

These upper bounds do not depend on the alphabet size of *M*! The gaps are optimal!

・ロト ・個ト ・ヨト ・ヨト 三日

Theorem

Let M be a 1-LA with n states.

- ► There exists an equivalent DFA with 2^{n·2n²} states.
- There exists an equivalent NFA with $n \cdot 2^{n^2}$ states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot (n+1)^n$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA		

These upper bounds do not depend on the alphabet size of *M*! The gaps are optimal!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Theorem

Let M be a 1-LA with n states.

- ► There exists an equivalent DFA with 2^{n·2n²} states.
- There exists an equivalent NFA with n · 2^{n²} states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot (n+1)^n$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

These upper bounds do not depend on the alphabet size of *M*! The gaps are optimal!

Theorem

Let M be a 1-LA with n states.

- ► There exists an equivalent DFA with 2^{n·2^{n²}} states.
- There exists an equivalent NFA with n · 2^{n²} states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot (n+1)^n$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

These upper bounds do not depend on the alphabet size of M!The gaps are optimal!

Theorem

Let M be a 1-LA with n states.

- ► There exists an equivalent DFA with 2^{n·2^{n²}} states.
- There exists an equivalent NFA with n · 2^{n²} states.

If M is deterministic then there exists an equivalent DFA with no more than $n \cdot (n+1)^n$ states.

	DFA	NFA
nondet. 1-LA	$2^{n \cdot 2^{n^2}}$	$n \cdot 2^{n^2}$
det. 1-LA	$n \cdot (n+1)^n$	$n \cdot (n+1)^n$

These upper bounds do not depend on the alphabet size of M!The gaps are optimal!

Optimality: the Witness Languages

[P.&Pisoni '14]

Fixed $n \ge 1$:

 $L_n =$

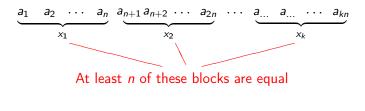
Optimality: the Witness Languages [P.&Pisoni '14] Fixed $n \ge 1$: $a_1 \quad a_2 \quad \cdots \quad a_n \quad a_{n+1}a_{n+2} \quad \cdots \quad a_{2n} \quad \cdots \quad a_{m-1}a_{$

$$L_n = \{x_1 x_2 \cdots x_k \mid k \ge 0, x_1, x_2, \dots, x_k \in \{0, 1\}^n,$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Optimality: the Witness Languages [P.&Pisoni '14]

Fixed $n \ge 1$:



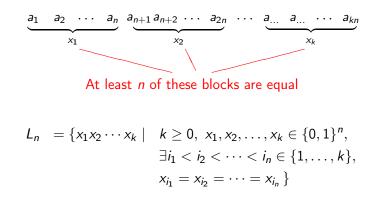
$$L_n = \{x_1 x_2 \cdots x_k \mid k \ge 0, x_1, x_2, \dots, x_k \in \{0, 1\}^n, \\ \exists i_1 < i_2 < \cdots < i_n \in \{1, \dots, k\}, \\ x_{i_1} = x_{i_2} = \cdots = x_{i_n}\}$$

・ロト ・ 日本 ・ 日本 ・ 日本

3

Optimality: the Witness Languages [P.&Pisoni '14]

Fixed $n \ge 1$:

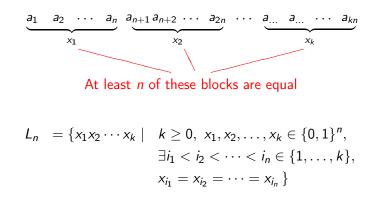


Example (n = 3): 00111001111011011011

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Optimality: the Witness Languages [P.&Pisoni '14]

Fixed $n \ge 1$:

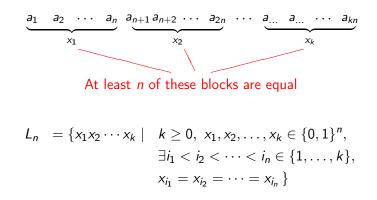


◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Example (n = 3): 0 0 1 | 1 1 0 | 0 1 1 | 1 1 0 | 1 1 0 | 1 1 1 | 0 1 1

Optimality: the Witness Languages [P.&Pisoni '14]

Fixed $n \ge 1$:



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Example (n = 3): 0 0 1 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 1

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - the marked cells correspond to the leftmost symbols of some blocks of length n
 - Compare, symbol by symbol, each two consecutive blocks of length n that start from the marked positions

$$0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 1\ 1 \qquad (n=3)$$

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - the marked cells correspond to the leftmost symbols of some blocks of length n
 - 3. Compare, symbol by symbol, each two consecutive blocks of length *n* that start from the marked positions

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - \blacktriangleright the marked cells correspond to the leftmost symbols of some blocks of length n
 - 3. Compare, symbol by symbol, each two consecutive blocks of length *n* that start from the marked positions

$$0 0 1|\hat{1} 1 0|0 1 1|\hat{1} 1 0|\hat{1} 1 0|1 1 1|0 1 1$$
 (n = 3)

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - the marked cells correspond to the leftmost symbols of some blocks of length n
 - 3. Compare, symbol by symbol, each two consecutive blocks of length *n* that start from the marked positions

$$\begin{array}{c} 0 \ 0 \ 1 \ | \ \hat{1} \ 1 \ 0 \ | \ 0 \ 1 \ 1 \ | \ \hat{1} \ 1 \ 0 \ | \ 1 \ 1 \ 1 \ | \ 0 \ 1 \ 1 \ \\ \end{array}$$

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - the marked cells correspond to the leftmost symbols of some blocks of length n
 - 3. Compare, symbol by symbol, each two consecutive blocks of length *n* that start from the marked positions

$$\begin{array}{c} 0 \ 0 \ 1 \ | \ \hat{1} \ 1 \ 0 \ | \ 0 \ 1 \ 1 \ \hat{1} \ 1 \ 0 \ | \ \hat{1} \ 1 \ 0 \ | \ 1 \ 1 \ 1 \ 0 \ 1 \ 1 \\ \rightarrow \end{array}$$

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - the marked cells correspond to the leftmost symbols of some blocks of length n
 - 3. Compare, symbol by symbol, each two consecutive blocks of length *n* that start from the marked positions

$$\begin{array}{c} 0 \ 0 \ 1 | \hat{1} \ 1 \ 0 | 0 \ 1 \ 1 | \hat{1} \ 1 \ 0 | \hat{1} \ 1 \ 0 | 1 \ 1 \ 1 | 0 \ 1 \ 1 \\ \longrightarrow \end{array}$$

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - the marked cells correspond to the leftmost symbols of some blocks of length n
 - 3. Compare, symbol by symbol, each two consecutive blocks of length *n* that start from the marked positions

$$0 \ 0 \ 1 \ | \ \hat{1} \ 1 \ 0 \ | \ 0 \ 1 \ 1 \ | \ \hat{1} \ 1 \ 0 \ | \ \hat{1} \ 1 \ 0 \ | \ 1 \ 1 \ 1 \ | \ 0 \ 1 \ 1 \$$
 (n = 3)

Nondeterministic strategy:
 Guess the leftmost positions of *n* input blocks containing the same factor and *Verify*

- Implementation (3 tape scans):
 - 1. Mark *n* tape cells
 - 2. Count the tape modulo *n* to check whether or not:
 - the input length is a multiple of n, and
 - the marked cells correspond to the leftmost symbols of some blocks of length n
 - 3. Compare, symbol by symbol, each two consecutive blocks of length *n* that start from the marked positions

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

(日) (四) (日) (日) (日)

State upper bound:

- Finite control:
 - a counter (up to n) for each possible block of length n
- There are 2^n possible different blocks of length n
- Number of states double exponential in n more precisely (2ⁿ − 1) · n^{2ⁿ} + n
- State lower bound:
 - n^{2ⁿ} (standard distinguishability arguments)

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

State upper bound:

- Finite control:
 - a counter (up to *n*) for each possible block of length *n*

ション ふゆ く 山 マ チャット しょうくしゃ

- There are 2ⁿ possible different blocks of length n
- Number of states double exponential in n more precisely (2ⁿ − 1) · n^{2ⁿ} + n
- State lower bound:
 - n^{2ⁿ} (standard distinguishability arguments)

How to Recognize L_n : Deterministic Finite Automata

Idea:

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

ション ふゆ く 山 マ チャット しょうくしゃ

State upper bound:

Finite control:

a counter (up to n) for each possible block of length n
 There are 2ⁿ possible different blocks of length n
 Number of states double exponential in n

State lower bound:

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

State upper bound:

- Finite control:
 - a counter (up to n) for each possible block of length n

ション ふゆ く 山 マ チャット しょうくしゃ

- There are 2^n possible different blocks of length n
- Number of states double exponential in n more precisely (2ⁿ 1) · n^{2ⁿ} + n

State lower bound:

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

State upper bound:

- Finite control:
 - a counter (up to n) for each possible block of length n

ション ふゆ く 山 マ チャット しょうくしゃ

• There are 2^n possible different blocks of length n

■ Number of states double exponential in n more precisely (2ⁿ − 1) · n^{2ⁿ} + n

State lower bound:

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

State upper bound:

- Finite control:
 - a counter (up to n) for each possible block of length n

ション ふゆ く 山 マ チャット しょうくしゃ

• There are 2^n possible different blocks of length n

■ Number of states double exponential in n more precisely (2ⁿ − 1) · n^{2ⁿ} + n

State lower bound:

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

State upper bound:

- Finite control:
 - a counter (up to n) for each possible block of length n

- There are 2^n possible different blocks of length n
- Number of states double exponential in n more precisely (2ⁿ − 1) · n^{2ⁿ} + n

State lower bound:
 n^{2ⁿ} (standard distinguishability arguments)

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

State upper bound:

- Finite control:
 - a counter (up to n) for each possible block of length n

- There are 2^n possible different blocks of length n
- Number of states double exponential in n more precisely (2ⁿ - 1) · n^{2ⁿ} + n
- State lower bound:
 - n^{2ⁿ} (standard distinguishability arguments)

- For each $x \in \{0,1\}^n$ count how many blocks coincide with x
- Accept if and only if one of the counters reaches the value n

State upper bound:

- Finite control:
 - a counter (up to n) for each possible block of length n
- There are 2^n possible different blocks of length n
- Number of states double exponential in n more precisely (2ⁿ - 1) · n^{2ⁿ} + n
- State lower bound:
 - *n*^{2ⁿ} (standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!

How to Recognize L_n : Nondeterministic Finite Automata

Idea:

• Guess $x \in \{0, 1\}^n$

Verify whether or not n blocks in the input contains x

State upper bound:

■ Finite control: a counter ≤ *n* for the occurrences of *x*, and a counter modulo *n* for input positions

ション ふゆ アメリア メリア しょうくの

• Number of states: $O(n^2 \cdot 2^n)$

State lower bound:

• $n^2 \cdot 2^n$ (fooling set technique)

How to Recognize L_n : Nondeterministic Finite Automata

Idea:

■ *Guess* $x \in \{0, 1\}^n$

Verify whether or not n blocks in the input contains x

State upper bound:

■ Finite control: a counter ≤ n for the occurrences of x, and a counter modulo n for input positions

ション ふゆ アメリア メリア しょうくの

• Number of states: $O(n^2 \cdot 2^n)$

State lower bound:
 n² · 2ⁿ (fooling set technique)

How to Recognize L_n : Nondeterministic Finite Automata

Idea:

■ *Guess* $x \in \{0, 1\}^n$

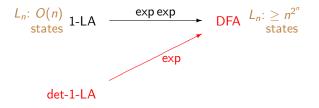
Verify whether or not n blocks in the input contains x

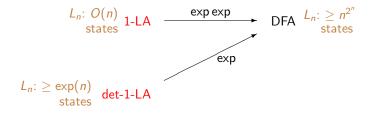
State upper bound:

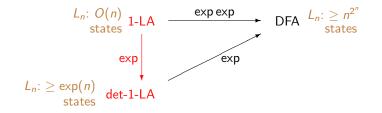
■ Finite control: a counter ≤ *n* for the occurrences of *x*, and a counter modulo *n* for input positions

ション ふゆ く 山 マ チャット しょうくしゃ

- Number of states: $O(n^2 \cdot 2^n)$
- State lower bound:
 - $n^2 \cdot 2^n$ (fooling set technique)



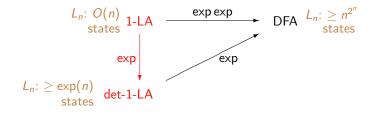




Corollary

Removing nondeterminism from 1-LAs *requires exponentially many states*

・ロト ・ 日 ・ モート ・ 田 ・ うへで



Corollary

Removing nondeterminism from 1-LA*s requires exponentially many states*

Cfr. Sakoda and Sipser question [Sakoda&Sipser '78]:

How much it costs in states to remove nondeterminism from two-way finite automata?

(ロ) (型) (E) (E) (E) (O)

Strongly Limited Automata

Dyck languages are accepted without fully using capabilities of 2-limited automata

 Chomsky-Schützenberger Theorem: Recognition of CFLs can be reduced to recognition of Dyck languages

- Dyck languages are accepted without fully using capabilities of 2-limited automata
- Chomsky-Schützenberger Theorem: Recognition of CFLs can be reduced to recognition of Dyck languages

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Dyck languages are accepted without fully using capabilities of 2-limited automata
- Chomsky-Schützenberger Theorem: Recognition of CFLs can be reduced to recognition of Dyck languages

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Question

Is it possible to restrict 2-limited automata without affecting their computational power?

- Dyck languages are accepted without fully using capabilities of 2-limited automata
- Chomsky-Schützenberger Theorem: Recognition of CFLs can be reduced to recognition of Dyck languages

Question

Is it possible to restrict 2-limited automata without affecting their computational power?

Forgetting Automata [Jancar&Mráz&Plátek '96]

YES! The co

- The content of any cell can be erased in the 1st or 2nd visit (using a fixed symbol)
- No other changes of the tape are allowed

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model inspired by the algorithm used by 2-limited automata to recognize Dyck languages

Restrictions on

- state changes
- head reversals
- rewriting operations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Model inspired by the algorithm used by 2-limited automata to recognize Dyck languages
- Restrictions on
 - state changes
 - head reversals
 - rewriting operations

Dyck Language Recognition

Moves to the right:

to search a closed bracket

Moves to the left:

- to search an open bracket
- to check the tape content in the final scan from right to left

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Rewritings:

- each closed bracket is rewritten in the first visit
- each open bracket is rewritten in the second visit
- no rewritings in the final scan

Dyck Language Recognition

Moves to the right:

to search a closed bracket

Moves to the left:

- to search an open bracket
- to check the tape content in the final scan from right to left

Only one state $q_0!$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Rewritings:

- each closed bracket is rewritten in the first visit
- each open bracket is rewritten in the second visit
- no rewritings in the final scan

Dyck Language Recognition

- Moves to the right:
 - to search a closed bracket
- Moves to the left:
 - to search an open bracket
 - to check the tape content in the final scan from right to left

Only one state $q_0!$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Rewritings:

- each closed bracket is rewritten in the first visit
- each open bracket is rewritten in the second visit
- no rewritings in the final scan

Dyck Language Recognition

- Moves to the right:
 - to search a closed bracket
- Moves to the left:
 - to search an open bracket One state for each type of bracket!

Only one state $q_0!$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• to check the tape content in the final scan from right to left

Rewritings:

- each closed bracket is rewritten in the first visit
- each open bracket is rewritten in the second visit
- no rewritings in the final scan

Dyck Language Recognition

- Moves to the right:
 - to search a closed bracket
- Moves to the left:
 - to search an open bracket One state for each type of bracket!

Only one state $q_0!$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- to check the tape content in the final scan from right to left
- Rewritings:
 - each closed bracket is rewritten in the first visit
 - each open bracket is rewritten in the second visit
 - no rewritings in the final scan

- ► Alphabet ∑ input
 - Γ working
- States and moves
 op initial state, moving from left to rig
 - Q2 moving from right to left.

Gy chiral scan when is its reached move from right to left and both the membrane in the transcence and the state

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Alphabet
 - Σ input
 - Working

States and moves

- q_0 initial state, moving from left to right
 - → move to the right
 - $_q {\overset{X_{red}}{\longleftrightarrow}}$ write $X \in \mathsf{\Gamma},$ enter state $q \in Q_L$, turn to the left
- Q_L moving from right to left
 - +-- move to the left $\stackrel{\times}{\leftarrow}$ write X, do not change state, move to the $\stackrel{\times}{\leftarrow}$ write X, enters state a_0 , turn to the right

 Q_{Υ} final scan

when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

・ロト ・ 四ト ・ 日ト ・ 日 ・

- Alphabet
 - Σ input
 - Working

States and moves

q_0 initial state, moving from left to right

--> move to the right

 \xleftarrow{X} write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left

 Q_L moving from right to left

-- move to the left

riangle - write X, do not change state, move to the left

 $\xrightarrow{\times}_{q_0}$ write X, enters state q_0 , turn to the right

 Q_{Υ} final scan

when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

- Alphabet
 - Σ input
 - Working

States and moves

 q_0 initial state, moving from left to right

--→ move to the right

 \xleftarrow{X} write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left

 Q_L moving from right to left

 Q_{Υ} final scan

when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

- Alphabet
 - Σ input
 - Working
- States and moves
 - q_0 initial state, moving from left to right
 - --→ move to the right
 - $_q \xleftarrow{X}$ write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left
 - Q_L moving from right to left
 - -- move to the let
 - $\stackrel{\times}{-}$ write X, do not change state, move to the lef
 - \xrightarrow{X}_{q_0} write X, enters state q_0 , turn to the right
 - Q_{Υ} final scan
 - when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

- Alphabet
 - Σ input
 - Working
- States and moves
 - q_0 initial state, moving from left to right
 - --→ move to the right
 - $_q \xleftarrow{X}$ write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left
 - Q_L moving from right to left

 Q_{Υ} final scan

when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

ション ふゆ く 山 マ チャット しょうくしゃ

- Alphabet
 - Σ input
 - Working
- States and moves
 - q_0 initial state, moving from left to right
 - --→ move to the right
 - $_q \xleftarrow{X_{-}}$ write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left
 - Q_L moving from right to left
 - <-- move to the left
 - $\frac{X}{X}$ write X, do not change state, move to the left $X \rightarrow_{q_0}$ write X, enters state q_0 , turn to the right
 - Q_{Υ} final scan
 - when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

- Alphabet
 - Σ input
 - Working
- States and moves
 - q_0 initial state, moving from left to right
 - --→ move to the right
 - $_q \xleftarrow{X}$ write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left
 - Q_L moving from right to left
 - $\begin{array}{l} & \longleftarrow \\ \xrightarrow{X} \\ \xrightarrow{X} \\ \xrightarrow{X} \\ \xrightarrow{X} \\ \xrightarrow{Y} \\ \xrightarrow{$

 Q_{Υ} final scan

when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

ション ふゆ く 山 マ チャット しょうくしゃ

- Alphabet
 - Σ input
 - Working
- States and moves
 - q_0 initial state, moving from left to right
 - --→ move to the right
 - $_q \xleftarrow{X}$ write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left
 - Q_L moving from right to left
 - ←-- move to the left
 - $\stackrel{X}{\leftarrow}$ write X, do not change state, move to the left
 - \xrightarrow{X}_{q_0} write X, enters state q_0 , turn to the right
 - Q_{Υ} final scan
 - when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

ション ふゆ く 山 マ チャット しょうくしゃ

- Alphabet
 - Σ input
 - Working
- States and moves
 - q_0 initial state, moving from left to right
 - --→ move to the right
 - $_q \xleftarrow{X}_{}$ write $X \in \Gamma$, enter state $q \in Q_L$, turn to the left
 - Q_L moving from right to left
 - $\begin{array}{ll} & \leftarrow -- & move \ to \ the \ left \\ & \leftarrow X \\ & \leftarrow X, \ do \ not \ change \ state, \ move \ to \ the \ left \\ & \leftarrow X_{q_0} \\ & \text{write } X, \ enters \ state \ q_0, \ turn \ to \ the \ right \end{array}$
 - Q_{Υ} final scan

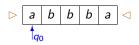
when \lhd is reached move from right to left and test the membership of the tape content to a "local" language

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

$$\triangleright a b b a \triangleleft$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 少へぐ

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



ション ふゆ アメリア メリア しょうくしゃ

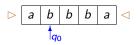
Transitions:

 $q_0 \longrightarrow move to the right$

other possibility in cell not yet rewritten:

 $q_{\sigma} \xleftarrow{\mathsf{X}}$ write $\mathsf{X} \in \mathsf{\Gamma}$, enter state $q_{\sigma} \in Q_L$, turn to the left

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



ション ふゆ アメリア メリア しょうくしゃ

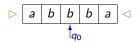
Transitions:

 $q_0 \longrightarrow move to the right$

other possibility in cell not yet rewritten:

 $q_{\sigma} \xleftarrow{\mathsf{X}}$ write $\mathsf{X} \in \mathsf{\Gamma}$, enter state $q_{\sigma} \in Q_L$, turn to the left

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



ション ふゆ アメリア メリア しょうくしゃ

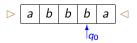
Transitions:

 $q_0 \longrightarrow move to the right$

other possibility in cell not yet rewritten:

 $q_{\sigma} \xleftarrow{\mathsf{X}}$ write $\mathsf{X} \in \mathsf{\Gamma}$, enter state $q_{\sigma} \in Q_L$, turn to the left

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

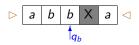


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Transitions:

 $q_0 \longrightarrow move to the right$ other possibility in cell not yet rewritten: $q_{\sigma} \xleftarrow{X} write X \in \Gamma$, enter state $q_{\sigma} \in Q_L$, turn to the left

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



Transitions:

 $\begin{array}{ll} q_0 & \dashrightarrow & \textit{move to the right} \\ & \text{other possibility in cell not yet rewritten:} \\ & q_{\sigma} \xleftarrow{X_{\circ}} \text{ write } X \in \Gamma, \text{ enter state } q_{\sigma} \in Q_L, \textit{ turn to the left} \end{array}$

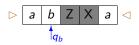
q_σ moving from right to left

cells already rewritten: +-- move to the left

cells containing $\gamma \in \{a, b\}$, nondeterministically select between:

 $\stackrel{\mathsf{Z}}{\longleftrightarrow} \text{ write Z, do not change state, move to the left}$ $\stackrel{\mathsf{Y}}{\longleftrightarrow}_{q_0} \text{ write Y, enters state } q_0, \text{ turn to the right (only if } \gamma = \sigma)$

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



Transitions:

 $q_0 \longrightarrow move \ to \ the \ right$ other possibility in cell not yet rewritten: $q_{\sigma} \xleftarrow{X_{\sigma}}$ write $X \in \Gamma$, enter state $q_{\sigma} \in Q_L$, turn to the left

q_σ moving from right to left

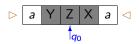
cells already rewritten: ←-- move to the left

cells containing $\gamma \in \{a, b\}$, nondeterministically select between:

 \leftarrow write Z, do not change state, *move to the left*

 $\xrightarrow{\mathbf{Y}}_{q_0}$ write Y, enters state q_0 , turn to the right (only if $\gamma = \sigma$)

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



Transitions:

 $q_0 \longrightarrow move to the right$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

Transitions:

 $q_0 \longrightarrow move to the right$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 - のへで

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



Transitions:

 $q_0 \longrightarrow move to the right$ other possibility in cell not yet rewritten: $q_{\sigma} \xleftarrow{X}$ write $X \in \Gamma$, enter state $q_{\sigma} \in Q_L$, turn to the left q_{σ} moving from right to left cells already rewritten: $\leftarrow -move to the left$ cells containing $\gamma \in \{a, b\}$, nondeterministically select between \xleftarrow{Z} write \overline{Z} do not change state move to the left

 $\underset{q_0}{\leftarrow}$ write Y, enters state q_0 , turn to the right (only if $\gamma = \sigma$)

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

Transitions:

 $q_0 \longrightarrow move \ to \ the \ right$ other possibility in cell not yet rewritten: $q_{\sigma} \xleftarrow{X_{\sigma}}$ write $X \in \Gamma$, enter state $q_{\sigma} \in Q_L$, turn to the left

 q_{σ} moving from right to left cells already rewritten: $\leftarrow --$ move to the left cells containing $\gamma \in \{a, b\}$, nondeterministically select between: $\leftarrow^{\mathbb{Z}}$ write Z, do not change state, move to the left $\leftarrow^{\mathbb{Y}}$ write Y, enters state a_0 , turn to the right (only if $\gamma = \sigma$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

$$a Y Z X X$$

Transitions:

 $q_0 \longrightarrow move \ to \ the \ right$ other possibility in cell not yet rewritten: $q_{\sigma} \xleftarrow{X_{-}} write \ X \in \Gamma$, enter state $q_{\sigma} \in Q_L$, turn to the left

 q_{σ} moving from right to left cells already rewritten: $\leftarrow --$ move to the left cells containing $\gamma \in \{a, b\}$, nondeterministically select between $\leftarrow \stackrel{\mathbb{Z}}{\longrightarrow}$ write Z, do not change state, move to the left

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

Transitions:

 $q_0 \longrightarrow move \ to \ the \ right$ other possibility in cell not yet rewritten: $q_{\sigma} \xleftarrow{X_{\sigma}}$ write $X \in \Gamma$, enter state $q_{\sigma} \in Q_L$, turn to the left

 q_{σ} moving from right to left cells already rewritten: \leftarrow -- move to the left cells containing $\gamma \in \{a, b\}$, nondeterministically select between: $\leftarrow^{\mathbb{Z}}$ write Z, do not change state, move to the left $\leftarrow^{\mathbb{Y}} \succ$ write X enters state q_{τ} turn to the right (only if $\alpha = q_{\tau}$

・ロト ・母ト ・ヨト ・ヨト ・ヨー のへで

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

Transitions:

 $q_0 \longrightarrow move \ to \ the \ right$ other possibility in cell not yet rewritten: $q_{\sigma} \xleftarrow{X_{-}} write \ X \in \Gamma$, enter state $q_{\sigma} \in Q_L$, turn to the left

q_{σ} moving from right to left

cells already rewritten: ←-- move to the left

cells containing $\gamma \in \{a, b\}$, nondeterministically select between:

 \leftarrow write Z, do not change state, *move to the left*

 $\xrightarrow{\mathbf{Y}}_{q_0}$ write Y, enters state q_0 , turn to the right (only if $\gamma = \sigma$)

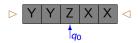
$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

Transitions:

 $q_0 \longrightarrow move to the right$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



Transitions:

 $q_0 \longrightarrow move to the right$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ の ・

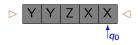
$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

Transitions:

 $q_0 \longrightarrow move to the right$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

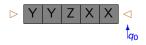


Transitions:

 $q_0 \longrightarrow move to the right$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$



Transitions:

q₀ --→ move to the right
 other possibility in cell not yet rewritten:
 q_σ < ^X/_∞ write X ∈ Γ, enter state q_σ ∈ Q_L, turn to the left
 q_σ moving from right to left
 cells already rewritten: <-- move to the left
 cells containing γ ∈ {a, b}, nondeterministically select betwee

 \swarrow_{q_0} write Y, enters state q_0 , turn to the right (only if $\gamma = \sigma$)

◆□▶ ◆圖▶ ◆目▶ ◆目▶ 目 のへで

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

$$| Y | Y | Z | X | X |$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Final phase:

The string between the end-markers should belong to

$$Y^*ZX^* + Y^*X^*$$

with the exceptions of inputs of length ≤ 1

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

$$\triangleright \mathbf{Y} \mathbf{Y} \mathbf{Z} \mathbf{X} \mathbf{X} \triangleleft$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Final phase:

The string between the end-markers should belong to

$$Y^*ZX^* + Y^*X^*$$

with the exceptions of inputs of length ≤ 1

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

$$\triangleright \mathbf{Y} \mathbf{Y} \mathbf{Z} \mathbf{X} \mathbf{X} \triangleleft$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Final phase:

The string between the end-markers should belong to

$$Y^*ZX^* + Y^*X^*$$

with the exceptions of inputs of length ≤ 1

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Final phase:

The string between the end-markers should belong to

$$Y^*ZX^* + Y^*X^*$$

with the exceptions of inputs of length ≤ 1

Strongly Limited Automata: Palindromes

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Final phase:

The string between the end-markers should belong to

$$Y^*ZX^* + Y^*X^*$$

with the exceptions of inputs of length ≤ 1

► The following two-letter factors are allowed:
▷Y YY YZ ZX YX XX X⊲
▷a ▷b a⊲ b⊲ ▷⊲

Strongly Limited Automata: Palindromes

$$\Sigma = \{a, b\}, \ \Gamma = \{X, Y, Z\}$$
$$q_0$$
$$Q_L = \{q_a, q_b\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Final phase:

The string between the end-markers should belong to

$$Y^*ZX^* + Y^*X^*$$

with the exceptions of inputs of length ≤ 1

► The following two-letter factors are allowed:
▷Y YY YZ ZX YX XX X⊲
▷a ▷b a⊲ b⊲ ▷⊲

► Computational power: same as 2-limited automata (CFLs)

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs
 - strongly limited automata
 - are polynomially related
 - 2-limited automata can be exponentially smaller
- ▶ CFLs → strongly limited automata: conversion from CFGs which heavily uses nondeterminism

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Computational power: same as 2-limited automata (CFLs)

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs

strongly limited automata

are polynomially related

2-limited automata can be exponentially smaller

 \blacktriangleright CFLs \rightarrow strongly limited automata: conversion from CFGs which heavily uses nondeterminism

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Computational power: same as 2-limited automata (CFLs)

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs
 - strongly limited automata
 - are polynomially related
 - 2-limited automata can be exponentially smaller
- ▶ CFLs → strongly limited automata: conversion from CFGs which heavily uses nondeterminism

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Computational power: same as 2-limited automata (CFLs)

- Descriptional power: the sizes of equivalent
 - CFGs
 - PDAs
 - strongly limited automata
 - are polynomially related
 - 2-limited automata can be exponentially smaller
- ► CFLs → strongly limited automata: conversion from CFGs which heavily uses nondeterminism

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Determinism vs Nondeterminism

What is the power of *deterministic* strongly limited automata?

- Each deterministic strongly limited automaton can be simulated by a deterministic 2-LA
- Deterministic languages as

$$L_1 = \{ ca^n b^n \mid n \ge 0 \} \cup \{ da^{2n} b^n \mid n \ge 0 \}$$

$$L_2 = \{ a^n b^{2n} \mid n \ge 0 \}$$

are not accepted by deterministic strongly limited automata

ション ふゆ アメリア メリア しょうくしゃ

Determinism vs Nondeterminism

What is the power of *deterministic* strongly limited automata?

ション ふゆ く 山 マ チャット しょうくしゃ

 Each deterministic strongly limited automaton can be simulated by a deterministic 2-LA

Deterministic languages as
 L₁ = {caⁿbⁿ | n ≥ 0} ∪ {da²ⁿbⁿ | n ≥ 0}
 L₂ = {aⁿb²ⁿ | n ≥ 0}

What is the power of *deterministic* strongly limited automata?

- Each deterministic strongly limited automaton can be simulated by a deterministic 2-LA
- Deterministic languages as

$$\begin{split} L_1 &= \{ ca^n b^n \mid n \geq 0 \} \cup \{ da^{2n} b^n \mid n \geq 0 \} \\ L_2 &= \{ a^n b^{2n} \mid n \geq 0 \} \end{split}$$

are not accepted by deterministic strongly limited automata

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

What is the power of *deterministic* strongly limited automata?

- Each deterministic strongly limited automaton can be simulated by a deterministic 2-LA
- Deterministic languages as

$$L_{1} = \{ ca^{n}b^{n} \mid n \ge 0 \} \cup \{ da^{2n}b^{n} \mid n \ge 0 \}$$

$$L_{2} = \{ a^{n}b^{2n} \mid n \ge 0 \}$$

are not accepted by deterministic strongly limited automata

Proper subclass of deterministic context-free languages

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Moving to the right, a strongly limited automaton can use only q₀
- A possible modification:

 a set of states Q_R used while moving to the right
 the simulation by PDAs remains polynomial
 L₁ = {caⁿbⁿ | n ≥ 0} ∪ {da²ⁿbⁿ | n ≥ 0} L₂ = {aⁿb²ⁿ | n ≥ 0} are accepted by deterministic devices

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Problem

What is the class of languages accepted by the deterministic westion of devices so obtained?

 Moving to the right, a strongly limited automaton can use only q₀

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ─ □

A possible modification:
 a set of states Q_R used while moving to the right

the simulation by PDAs remains polynomial

•
$$L_1 = \{ca^n b^n \mid n \ge 0\} \cup \{da^{2n} b^n \mid n \ge 0\}$$

 $L_2 = \{a^n b^{2n} \mid n \ge 0\}$
are accepted by deterministic devices

Problem

What is the class of languages accepted by the deterministic version of devices so obtained?

 Moving to the right, a strongly limited automaton can use only q₀

◆□▶ ◆□▶ ★∃▶ ★∃▶ = うへの

- A possible modification:
 a set of states Q_R used while moving to the right
 - the simulation by PDAs remains polynomial
 - $L_1 = \{ca^nb^n \mid n \ge 0\} \cup \{da^{2n}b^n \mid n \ge 0\}$ $L_2 = \{a^nb^{2n} \mid n \ge 0\}$ are accepted by deterministic devices

Problem

What is the class of languages accepted by the deterministic version of devices so obtained?

 Moving to the right, a strongly limited automaton can use only q₀

ション ふゆ く 山 マ チャット しょうくしゃ

- A possible modification:
 a set of states Q_R used while moving to the right
 - the simulation by PDAs remains polynomial
 - $L_1 = \{ca^nb^n \mid n \ge 0\} \cup \{da^{2n}b^n \mid n \ge 0\}$ $L_2 = \{a^nb^{2n} \mid n \ge 0\}$ are accepted by deterministic devices

Problem

What is the class of languages accepted by the deterministic version of devices so obtained?

 Moving to the right, a strongly limited automaton can use only q₀

ション ふゆ く 山 マ チャット しょうくしゃ

- A possible modification:
 a set of states Q_R used while moving to the right
 - the simulation by PDAs remains polynomial

•
$$L_1 = \{ca^n b^n \mid n \ge 0\} \cup \{da^{2n} b^n \mid n \ge 0\}$$

 $L_2 = \{a^n b^{2n} \mid n \ge 0\}$
are accepted by deterministic devices

Problem

What is the class of languages accepted by the deterministic version of devices so obtained?

Final Remarks

◆□ > < 個 > < E > < E > E 9 < 0</p>

Active visit of a tape cell: any visit changing the content

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted starting from the *first* active visit [Wechsung '75]

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted starting from the *first* active visit [Wechsung '75]

Dual Return Complexity

Maximum number of visits to a tape cell counted up to the *last* active visit $dret-c(d) \equiv d$ -limited automata

ション ふゆ く 山 マ チャット しょうくしゃ

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted starting from the *first* active visit [Wechsung '75] ret-c(1): regular languages ret-c(d), $d \ge 2$: context-free languages ret-c(2) *deterministic:* not comparable with DCFLs

Dual Return Complexity

Maximum number of visits to a tape cell counted up to the *last* active visit $dret-c(d) \equiv d$ -limited automata

ション ふゆ く 山 マ チャット しょうくしゃ

Active visit of a tape cell: any visit changing the content

Return Complexity

Maximum number of visits to a tape cell counted starting from the *first* active visit [Wechsung '75] ret-c(1): regular languages ret-c(d), $d \ge 2$: context-free languages ret-c(2) *deterministic:* not comparable with DCFLs

Dual Return Complexity

Maximum number of visits to a tape cell counted up to the *last* active visit $dret-c(d) \equiv d$ -limited automata

ret-c(f(n)) = dret-c(f(n)) = 1AuxPDA(f(n))[Wechsung&Brandstädt '79]

・ロット 本語 マネ 山下 大田 マネク

Thank you for your attention!

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ