Restricted Turing Machines and Language Recognition

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

LATA 2016 - Prague
March 14-18, 2016

Introduction

The Chomsky Hierarchy

| Turing Machines | type 0 |
| :--- | ---: | ---: |
| Linear Bounded Automata | type 1 |
| Pushdown Automata | type 2 |
| Finite Automata | |

Limited Automata [Hibbard '67]

One-tape Turing machines with restricted rewritings

Definition

Fixed an integer $d \geq 1$, a d-limited automaton is

- a one-tape Turing machine
- which is allowed to rewrite the content of each tape cell only in the first d visits

Computational power

- For each $d \geq 2, d$-limited automata characterize context-free languages
[Hibbard '67]

The Chomsky Hierarchy

One-tape Turing Machines	type 0	
Linear Bounded Automata	type 1	
(-Limited Automata $(d \geq 2)$	type 2	
Finite Automata		
"Hennie Machines"		

General Contents

Part I: Fast One-Tape Turing Machines Hennie Machines \& C

Part II: One-Tape Turing Machines with Rewriting Restrictions Limited Automata \& C

Part I: Fast One-Tape Turing Machines

Outline

- One-Tape Turing machines
- Time complexity: different measures
- Crossing sequences
- Lower bounds for nonregular languages recognition
- Optimality
- Fast recognition of unary nonregular languages
- Final remarks: other complexity measures

One-Tape Turing Machines

- Finite state control
- Semi-infinite tape at the beginning:
- input string (leftmost part)
- blank symbol (remaining squares)
- Computation step
- change of state
- nonblank symbol written in the scanned tape cell
- head moved either to the left, or to the right, or kept on the same cell
- Accepting and rejecting states: the computation stops

One-Tape Turing Machines

- Deterministic version (dTM)
- Nondeterministic version (nTM)

One-Tape Turing Machines

Time complexity:

- $t(\mathcal{C})$ number of moves in the computation \mathcal{C}
- $t(x)$ for an input x
- $t(n)$ for inputs of length n

Nondeterministic case: several computations on a same input How to define $t(x)$ and $t(n)$?

Complexity Measures

strong measure: costs of all computations on x

$$
t(x)=\max \{t(\mathcal{C}) \mid \mathcal{C} \text { is a computation on } x\}
$$

weak measure: minimum cost of accepting x

$$
t(x)= \begin{cases}\min \{t(\mathcal{C}) \mid \mathcal{C} \text { is accepting on } x\} & \text { if } x \in L \\ 0 & \text { otherwise }\end{cases}
$$ best case for acceptance!

accept measure: costs of all accepting computations on x

$$
t(x)= \begin{cases}\max \{t(\mathcal{C}) \mid \mathcal{C} \text { is accepting on } x\} & \text { if } x \in L \\ 0 & \text { otherwise }\end{cases}
$$ worst case for acceptance!

$t(n)=\max \left\{t(x)\left|x \in \Sigma^{*},|x|=n\right\}\right.$

Crossing Sequences

Crossing sequence of a computation \mathcal{C} at a boundary b between two tape squares:

- $\left(q_{1}, \ldots, q_{k}\right)$
- q_{i} is the state when b is crossed for the i th time

Crossing Sequences: Compatibility

- $\left(q_{1}, \ldots, q_{k}\right),\left(p_{1}, \ldots, p_{h}\right)$: finite crossing sequence
- it is possible to verify whether or not they are compatible with respect to an input symbol a,
i.e., $\left(q_{1}, \ldots, q_{k}\right)$ and $\left(p_{1}, \ldots, p_{h}\right)$ could be at the left boundary and at the right boundary of a tape square which initially contains the symbol a

Lower Bounds

One-Tape Machines

Problem:
Find tight lower bounds for

- the minimum amount of time $t(n)$
- the length of crossing sequences $c(n)$
for nonregular language recognition

One-Tape Machines: Simple Bounds

Length of the crossing sequences

Theorem

If L is accepted by a $n T M$ such that $c(n)=O(1)$, under the weak measure, then L is regular

Proof idea:

- Let K be such that $c(n) \leq K$
- Define a NFA A accepting L s.t.
- the states are the crossing sequences of length $\leq K$
- the transition function is defined according to the "compatibility" between crossing sequences

One-Tape Machines: Simple Bounds

Time

Theorem

If L is accepted by a $n T M$ such that $t(n)=o(n)$, under the weak measure, then $t(n)=O(1)$ and L is regular

Proof idea:

- Let n_{0} s.t. $t(n)<n$, for each $n \geq n_{0}$
- Given $x \in L$ with $|x| \geq n_{0}$, there is a computation \mathcal{C} that accepts x just reading a proper prefix x^{\prime} of length $\leq t(x)$
- \mathcal{C} should also accept x^{\prime}
- Since all x^{\prime} is read in $\mathcal{C}, t\left(x^{\prime}\right) \geq x^{\prime}$ implying $\left|x^{\prime}\right|<n_{0}$
- Hence, the membership to L can be decided just testing an input prefix of length at most n_{0}

Remark: The same argument works for multitape machines

One-Tape Machines: Simple Bounds

> Does it is possible to improve the lower bounds on $c(n)$ and $t(n)$ for nonregular language recognition given in the previous results?

Different bounds have found depending

- on the measure (strong, accept, weak)
- on the kind of machines (deterministic, nondeterministic)

Deterministic Machines: Lower Bounds (strong measure)

- Hennie (1965) proved that
one-tape deterministic machines working in linear time accept only regular languages
Furthermore, in order to accept nonregular languages

$$
c(n) \text { must grow at least as } \log n
$$

- Trakhtenbrot (1964) and Hartmanis (1968), independently, got a better time lower bound:
in order to recognize a nonregular language a dTM needs time $t(n)$ growing at least as $n \log n$
- Optimal!

There are nonregular languages accepted in time $O(n \log n)$

Nondeterministic Machines

weak measure:

- There is nonregular language accepted by a nTM in $o(n \log n)$ time [Wagner\&Wechsung '86]
- There is a NP-complete language accepted by a nTM in $O(n)$ time
[Michel '91]
strong measure:
- The time lower bound $n \log n$ proved for dTMs also holds for nTMs
[Tadaki\&Yamakami\&Lin '10]
accept measure:
- The $n \log n$ lower bound also holds
[P.'09]

Crossing Sequences: "Cut-and-Paste"

Given:

u	v

Lower Bounds for Accept Measure

Lemma

If a string w is accepted by a computation \mathcal{C} having a same crossing sequence at 3 different boundaries of the input, then there is a computation \mathcal{C}^{\prime} with $c\left(\mathcal{C}^{\prime}\right)=c(\mathcal{C})$ accepting a shorter string w^{\prime}

Accept Measure: Lower Bound for $c(n)$

- $L[k]:=$ set of strings having an accepting computation \mathcal{C} with $c(\mathcal{C})=k$
- $w_{k}:=$ a shortest string in $L[k]$, for $L[k] \neq \emptyset$
- $n_{k}:=\left|w_{k}\right|$
- On w_{k} each crossing sequence can appear at most twice
- At least $\left\lfloor\frac{n_{k}-1}{2}\right\rfloor$ different crossing sequences
- Hence $q^{k+1} \geq\left\lfloor\frac{n_{k}-1}{2}\right\rfloor(q:=$ number of states), then:

$$
c\left(n_{k}\right) \geq k \geq \log _{q}\left\lfloor\frac{n_{k}-1}{2}\right\rfloor-1
$$

- If $c(n)$ is unbounded then $L[k] \neq \emptyset$ for infinitely many k
- Hence $c(n) \geq d \log n$, for some $d>0$, infinitely many n

$$
c(n)=o(\log n) \text { implies } c(n)=O(1) \text { and } L \text { regular }
$$

Accept Measure: Lower Bound for $t(n)$

If $c(n) \neq O(1)$:

- w_{k} is accepted by a computation \mathcal{C}_{k} using at least $\left\lfloor\frac{n_{k}-1}{2}\right\rfloor$ different crossing sequences
- \mathcal{C}_{k} has $\geq\left\lfloor\frac{n_{k}-1}{4}\right\rfloor$ crossing sequences of length $\geq \log _{q}\left\lfloor\frac{n_{k}-1}{4}\right\rfloor$
(combinatorial argument)
- Hence \mathcal{C}_{k} consists of at least

$$
\left\lfloor\frac{n_{k}-1}{4}\right\rfloor \cdot \log _{q}\left\lfloor\frac{n_{k}-1}{4}\right\rfloor \geq d\left|w_{k}\right| \log \left|w_{k}\right|
$$

many steps, for some $d \geq 0$

- $t(n) \geq d n \log n$, for infinitely many n

Hence:

$$
\begin{gathered}
t(n)=o(n \log n) \text { implies } c(n)=O(1) \text { and, thus, } \\
L \text { regular and } t(n)=O(n)
\end{gathered}
$$

Lower Bounds for Accept Measure

Summing up:
Theorem ([P.'09])
Let M be a $n T M$ accepting a language L such that in each accepting computation

- the length of crossing sequences is bounded by $c(n)$
- the time is bounded by $t(n)$

If $c(n)=o(\log n)$ then $c(n)=O(1)$ and L is regular
If $t(n)=o(n \log n)$ then

- $t(n)=O(n)$
- $c(n)=O(1)$
- L is regular

Weak Measure

Does it is possible to extend the lower bounds from the accept to the weak measure?

Time: negative answer

Theorem ([Michel '91])

There exists an NP-complete language accepted in time $O(n)$ by a nTM under the weak measure

- Linear time is necessary for regular languages

However:
The length of crossing sequences should grow at least as $\log \log n$ [P.'09]

Weak Measure: Lower Bound for $c(n)$

- $L:=$ language accepted by the given machine M
- For each $n \geq 1$:
$N_{n}:=$ NFA with states all crossing sequences of length $\leq c(n)$, transitions defined according to the "compatibility" relation, at most $q^{c(n)+1}$ states
- N_{n} agrees with M on strings of length $\leq n$
- $A_{n}:=$ DFA equivalent to N_{n}, at most $2^{q^{c(n)+1}}$ states
- If L is not regular, then
the number of the states of A_{n} is $\geq \frac{n+3}{2}$ i.o. [Karp '67]
- Hence $2^{q^{c(n)+1}} \geq \frac{n+3}{2}$, implying

$$
c(n) \geq d \log \log n
$$

for some $d>0$ and infinitely many n 's

Summary of the Lower Bounds

		strong	accept	weak
dTM	$t(n)$			
	$c(n)$	$n \log n$	$n \log n$	$n \log n$
	$\log n$	$\log n$	$\log n$	
nTM	$t(n)$ $c(n)$	$n \log n$	$n \log n$	n
	$\log n$	$\log n$	$\log \log n$	

Optimality

Optimality of the Bounds

$L=\left\{a^{2^{m}} \mid m \geq 0\right\}$
[Hartmanis '68]
L is accepted by a dTM M as follows:

- At the beginning all the input cells are "unmarked"
- M sweeps form left to right over the input segment and marks off the 1st, 3th, 5th, etc. unmarked squares
- M repeats the previous step until the rightmost square of the input segment becomes marked
- M accepts if and only if all the input segment is marked

Complexity

- On input a^{n}, M makes $O(\log n)$ sweeps of the tape:

$$
c(n)=O(\log n) \text { and } t(n)=O(n \log n)
$$

- M is deterministic and the previous bounds are satisfied by all computations: strong measure
- This gives the optimality of all the lower bounds in the table

		strong	accept	weak
dTM	$t(n)$			
	$c(n)$	$n \log n$	$n \log n$	$n \log n$
	$\log n$	$\log n$	$\log n$	
nTM	$t(n)$ $c(n)$	$n \log n$	$n \log n$	n
		$\log n$	$\log n$	$\log \log n$

with the exception of those for nTMs, under the weak measure

- Unary witness

Weak Measure: Optimality for nTMs

- There are nonregular languages accepted in time $O(n)$
- Regular languages require time n
[Michel '91]
- No "gap" between regular and nonregular languages
- The example in [Michel '91] strongly relies on an input alphabet with more than one symbol
- Up to now, we do not know any example of unary nonregular language accepted in weak time $O(n)$
- Conjecture: If a nTM accepts a unary language L in time $o(n \log \log n)$ under the weak measure then L is regular
- We know an example of unary language accepted in time $O(n \log \log n)$ under the weak measure

Fast Recognition of Unary Languages

nTMs and Unary Languages: Basic Techniques

Tape Tracks

- We can consider a tape divided in a fixed number of tracks
- The input is written on the first track

Track 1	i	n	p	u	t	S	t	r	i	n	g	g
Track 2	m	e	m	0	r	y	S	p	a	C		e
Track 3	m	e	m	0	r	y	S	p	a	C		e

nTMs and Unary Languages: Basic Techniques

How to count input symbols

- A counter is kept on track 2 , starting from the position scanned by the tape head
- When the head is moved to the right, the counter is incremented to count one more position and it is shifted to the right
- This is done in $O(\log j)$ steps using track 3 as an auxiliary variable ($j=$ value of the counter)
- k tape positions are counted in $O(k \log k)$ moves

nTMs and Unary Languages: Basic techniques

How to compute $n \bmod k$
$n=$ input length
$k=$ integer written somewhere

- Reset the counter on track 2 each time it becomes equal to k
- When the end of the input is reached, track 2 contains $n \bmod k$
- To implement the comparison between the counter and k :
- The value of k is kept on an extra track (track 4)
- When the input head is moved to the right to count one more position, the representation of k is moved one position to the right in such a way that it is always aligned with the counter on track 2, to make easy the comparison
- The total time is $O(n \log k)$

A Unary Language Accepted in Weak Time $O(n \log \log n)$

- For each integer n let

$$
q(n):=\text { the smallest integer that does not divide } n
$$

- We consider the language

$$
L=\left\{a^{n} \mid q(n) \text { is not a power of } 2\right\}
$$

- L is recognized by the following nondeterministic algorithm: input a^{n}
[Mereghetti '08]
guess an integer $s, s>1$
guess an integer $t, 2^{s}<t<2^{s+1}$
if $n \bmod 2^{s}=0$ and $n \bmod t \neq 0$ then accept
else reject

A Unary Language Accepted in Weak Time $O(n \log \log n)$

input a^{n}
guess an integer $s, s>1$
guess an integer $t, 2^{s}<t<2^{s+1}$
if $n \bmod 2^{s}=0$ and $n \bmod t \neq 0$ then accept else reject

Implementation and complexity:

- Two extra tracks (track 5 and 6) are used to guess 2^{s} and t (linear time)
- Using the previous technique, $n \bmod 2^{s}$ and $n \bmod t$ are computed (time $O(n \log t)$)
- Depending on the outcomes, the input is accepted or rejected
- The overall time of a computation is $O(n \log t)$

A Unary Language Accepted in Weak Time $O(n \log \log n)$

input a^{n}
guess an integer $s, s>1$
guess an integer $t, 2^{s}<t<2^{s+1}$
if $n \bmod 2^{s}=0$ and $n \bmod t \neq 0$ then accept else reject

Implementation and complexity:

- Weak measure: it is enough to find a bound for one accepting computation, namely for a t which leads to acceptance
- We can take $t=q(n)$
- $q(n)=O(\log n)$
[Alt\&Mehlhorn '75]
- The time is $O(n \log \log n)$
- With a similar argument, we can prove $c(n)=O(\log \log n)$

A Unary Language Accepted in Weak Time $O(n \log \log n)$

$$
\begin{gathered}
L=\left\{a^{n} \mid \text { the smallest integer which does not divide } n\right. \\
\text { is not a power of } 2\}
\end{gathered}
$$

We have proved the following:

Theorem ([P.'09])

L is accepted by a one-tape nondeterministic machine with

- $t(n)=O(n \log \log n)$
- $c(n)=O(\log \log n)$
under the weak measure

More on L : Space Complexity

The language L and its complement have been widely studied in the literature.

Some results concerning space:

- L^{c} is accepted by a dTM with a separate worktape, using the minimum amount of space $O(\log \log n)$
[Alt\&Mehlhorn '75]
- For L we can even do better:
L is accepted by a one-way nTM with a separate worktape, using the minimum amount of space $O(\log \log n)$, under the weak measure [Mereghetti '08]
L seems a good example of nonregular language with "low" complexity

Final Remarks

Closing Remarks

We considered the "border" between regular and nonregular languages, wrt to the time $t(n)$ and the length of crossing sequences $c(n)$
Similar investigations can be have been done (even for different classes of languages) wrt other resources:

- Space
- Head reversals
e.g. [Sziepietowski '94, Mereghetti '08]
e.g. [Bertoni\&Mereghetti\&P.'94]
- Return complexity or Active visits [Wechsung '75, Chytil '76]
- Dual return complexity
[Hibbard '67]

Thank you for your attention!

