Optimal State Reductions of Automata with Partially Specified Behaviors

Nelma Moreira ${ }^{1} \quad$ Giovanni Pighizzini ${ }^{2} \quad$ Rogério Reis ${ }^{1}$
${ }^{1}$ Centro de Matemática \& Faculdade de Ciências
Universidade do Porto, Portugal
${ }^{2}$ Dipartimento di Informatica
Università degli Studi di Milano, Italy
SOFSEM 2015
Pec pod Sněžkou, Czech Republic
January 24-28, 2015

Motivation

Finite automaton A
Question: $\quad x \in L(A)$?
Answer: Yes/No

Motivation

Finite automaton A
Question: $\quad x \in L(A)$?
Answer: Yes/No

What if for some $x \in \Sigma^{\star}$, we don't care for the answer?

Motivation

Finite automaton A
Question: $\quad x \in L(A)$?
Answer: Yes/No

What if for some $x \in \Sigma^{\star}$, we don't care for the answer?

Goal: Study automata with three kinds of states:

- accepting states
- rejecting states
- don't care states

Motivation: Example

$$
\Sigma=\{-, 0, \ldots, 9\}
$$

Some strings: 12 9-- -12 27-01-2015 ...

Motivation: Example

$$
\Sigma=\{-, 0, \ldots, 9\}
$$

Some strings: 12 9-- -12 27-01-2015 ...

Motivation: Example

$$
\Sigma=\{-, 0, \ldots, 9\}
$$

Some strings. 12
$12 \quad 9 \div-12 \quad 27-01-2015$

We do not care the behavior of A on strings that do not represent integers!

Motivation: Example

$$
\Sigma=\{-, 0, \ldots, 9\}
$$

Some strings: 12 9-- -12 27-01-2015 ...

Motivation: Example

$$
\Sigma=\{-, 0, \ldots, 9\}
$$

Some strings: 12 9 $<-\neq 2$ 27-01-2015 ...

We do not care the behavior of B on strings that do not represent dates!

Related Works

Digital system design: incomplete Moore machines

- Minimization
- NP-hardness
(Paull \& Unger, 1959)
- several exact and heuristic algorithms since then

Model checking:

- Automata with three color states
(Chen. et al, 2009)
- Automata over infinite words
(Eisinger \& Klaedtke, 2008)
Automata theory:
- Self-verifying automata
(Jirásková \& Pighizzini, 2011)

Automata with don't care States (dcNFAs)

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$

- nondeterministic transitions and multiple initial states
- F^{\oplus} accepting states
- F^{\ominus} rejecting states

Languages:

- $\mathcal{L}^{\oplus}(A)$ accepted language
- $\mathcal{L}^{\ominus}(A)$ rejected language

Automata with don't care States (dcNFAs)

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$

- nondeterministic transitions and multiple initial states
- F^{\oplus} accepting states
- F^{\ominus} rejecting states

Languages:

- $\mathcal{L}^{\oplus}(A)$ accepted language
- $\mathcal{L}^{\ominus}(A)$ rejected language

Requirement: no contradictory answers

- $\mathcal{L}^{\oplus}(A) \cap \mathcal{L}^{\ominus}(A)=\emptyset$

Automata with don't care States (dcNFAs)

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$

- nondeterministic transitions and multiple initial states
- F^{\oplus} accepting states
- F^{\ominus} rejecting states

Languages:

- $\mathcal{L}^{\oplus}(A)$ accepted language
- $\mathcal{L}^{\ominus}(A)$ rejected language

Requirement: no contradictory answers

- $\mathcal{L}^{\oplus}(A) \cap \mathcal{L}^{\ominus}(A)=\emptyset$

Special case: self-verifying automata

- when $\mathcal{L}^{\oplus}(A) \cup \mathcal{L}^{\ominus}(A)=\Sigma^{\star}$

Example

- $\mathcal{L}^{\oplus}(A)=\left(a^{3} b^{3}\right)^{\star}\left(\varepsilon+a^{3}\right)$ accepted language
- $\mathcal{L}^{\ominus}(A)=\left(a^{3} b^{3}\right)^{\star}\left(a^{3} b^{2}\right) \quad$ rejected language

Compatibility

Definition 1
A language L is said to be compatible with a dcNFA A whenever

$$
\mathcal{L}^{\oplus}(A) \subseteq L \quad \text { and } \quad \mathcal{L}^{\ominus}(A) \subseteq L^{c}
$$

Example

- $\mathcal{L}^{\oplus}(A)=\left(a^{3} b^{3}\right)^{\star}\left(\varepsilon+a^{3}\right)$ accepted language
- $\mathcal{L}^{\ominus}(A)=\left(a^{3} b^{3}\right)^{\star}\left(a^{3} b^{2}\right) \quad$ rejected language

Example

- $\mathcal{L}^{\oplus}(A)=\left(a^{3} b^{3}\right)^{\star}\left(\varepsilon+a^{3}\right)$ accepted language
- $\mathcal{L}^{\ominus}(A)=\left(a^{3} b^{3}\right)^{\star}\left(a^{3} b^{2}\right) \quad$ rejected language
- $L=\left(a^{3} b^{3}\right)^{\star}\left(\varepsilon+a+a^{2}+a^{3}\right)$ is compatible with A

Conversion into Compatible DFAs

Compatibility Graph

$$
A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle \mathrm{dcNFA}
$$

- $L_{q}^{\oplus}, L_{q}^{\ominus}$ languages accepted and rejected starting from $q \in Q$
- $p, q \in Q$ are compatible iff $\left(L_{p}^{\oplus} \cup L_{q}^{\oplus}\right) \cap\left(L_{p}^{\ominus} \cup L_{q}^{\ominus}\right)=\emptyset$

Compatibility Graph

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle \mathrm{dcNFA}$

- $L_{q}^{\oplus}, L_{q}^{\ominus}$ languages accepted and rejected starting from $q \in Q$
- $p, q \in Q$ are compatible iff $\left(L_{p}^{\oplus} \cup L_{q}^{\oplus}\right) \cap\left(L_{p}^{\ominus} \cup L_{q}^{\ominus}\right)=\emptyset$

Definition 1
Compatibility graph of A :

- the vertex set is Q
- $\{p, q\}$ is an edge iff p and q are compatible

Compatibility Graph

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle \mathrm{dcNFA}$

- $L_{q}^{\oplus}, L_{q}^{\ominus}$ languages accepted and rejected starting from $q \in Q$
- $p, q \in Q$ are compatible iff $\left(L_{p}^{\oplus} \cup L_{q}^{\oplus}\right) \cap\left(L_{p}^{\ominus} \cup L_{q}^{\ominus}\right)=\emptyset$

Definition 1

Compatibility graph of A :

- the vertex set is Q
- $\{p, q\}$ is an edge iff p and q are compatible

Example:

Clique Covering

A clique covering of an undirected graph $G=(Q, E)$ is a set $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ s.t.

- $\alpha_{i} \subseteq Q, i=1, \ldots, s$
- the graph $\left(\alpha_{i}, E \cap\left(\alpha_{i} \times \alpha_{i}\right)\right)$ is complete, $i=1, \ldots, s$
- $\bigcup_{i=1}^{s} \alpha_{i}=Q$

$$
\begin{aligned}
& \left\{s_{0}, s_{1}, s_{2}, s_{3}\right\} \\
& \left\{s_{0}, s_{1}, s_{2}, s_{4}\right\} \\
& \left\{s_{1}, s_{2}, s_{5}\right\}
\end{aligned}
$$

Clique Covering

A clique covering of an undirected graph $G=(Q, E)$ is a set $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$ s.t.

- $\alpha_{i} \subseteq Q, i=1, \ldots, s$
- the graph $\left(\alpha_{i}, E \cap\left(\alpha_{i} \times \alpha_{i}\right)\right)$ is complete, $i=1, \ldots, s$
- $\bigcup_{i=1}^{s} \alpha_{i}=Q$

$$
\begin{aligned}
& \left\{s_{0}, s_{2}, s_{4}\right\} \\
& \left\{s_{1}, s_{3}\right\} \\
& \left\{s_{5}\right\}
\end{aligned}
$$

Characterization Theorem

Given:

- dcNFA $A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$
- DFAs $A^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, i^{\prime}, F^{\prime}\right\rangle$
A^{\prime} is compatible with A iff there is a function $\phi: Q^{\prime} \rightarrow 2^{Q}$ s.t.
$\phi\left(Q^{\prime}\right)$ is a clique covering of the compatibility graph of A and ... (details in the proceedings)

A Pseudo-Subset Construction

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$ a given a dcNFA
Define a DFA $A^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, i^{\prime}, F^{\prime}\right\rangle$ as:
$Q^{\prime}=$ set of all maximal cliques of the compatibility graph

A Pseudo-Subset Construction

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$ a given a dcNFA
Define a DFA $A^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, i^{\prime}, F^{\prime}\right\rangle$ as:
$Q^{\prime}=$ set of all maximal cliques of the compatibility graph
$i^{\prime}=$ a clique that includes all the initial states of A, i.e.,

$$
i^{\prime} \supseteq I
$$

A Pseudo-Subset Construction

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$ a given a dcNFA
Define a DFA $A^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, i^{\prime}, F^{\prime}\right\rangle$ as:
$Q^{\prime}=$ set of all maximal cliques of the compatibility graph
$i^{\prime}=$ a clique that includes all the initial states of A, i.e.,

$$
i^{\prime} \supseteq I
$$

$\delta^{\prime}(\alpha, \sigma)=$ a clique that includes all the states reachable from states in $\alpha \in Q^{\prime}$ reading $\sigma \in \Sigma$, i.e.,

$$
\delta^{\prime}(\alpha, \sigma) \supseteq \bigcup_{q \in \alpha} \delta(q, \sigma)
$$

A Pseudo-Subset Construction

$A=\left\langle Q, \Sigma, \delta, I, F^{\oplus}, F^{\ominus}\right\rangle$ a given a dcNFA
Define a DFA $A^{\prime}=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, i^{\prime}, F^{\prime}\right\rangle$ as:
$Q^{\prime}=$ set of all maximal cliques of the compatibility graph
$i^{\prime}=$ a clique that includes all the initial states of A, i.e.,

$$
i^{\prime} \supseteq I
$$

$\delta^{\prime}(\alpha, \sigma)=$ a clique that includes all the states reachable from states in $\alpha \in Q^{\prime}$ reading $\sigma \in \Sigma$, i.e.,

$$
\delta^{\prime}(\alpha, \sigma) \supseteq \bigcup_{q \in \alpha} \delta(q, \sigma)
$$

$F^{\prime}=$ a set satisfying:

- all cliques containing accepting states are in F^{\prime}, and
- all cliques containing rejecting states are not in F^{\prime}, i.e.

$$
\left\{\alpha \mid \alpha \cap F^{\oplus} \neq \emptyset\right\} \subseteq F^{\prime} \subseteq\left\{\alpha \cap F^{\ominus}=\emptyset\right\}
$$

dcNFA and Compatible DFAs: Example

dcNFA and Compatible DFAs: Example

DFAs obtained with the pseudo-subset construction:
b

dcNFA and Compatible DFAs: Example

More compatible DFAs:
a

Furthermore, there are no compatible DFAs with <3 states!

Another Example

Another Example

4 maximal cliques

Pseudo-subset construction:

In this example, all compatible DFAs require at least 4 states!

Covering without Maximal Cliques

Covering without Maximal Cliques

4 maximal cliques

The pseudo-subset construction produces DFAs with 4 states

Covering without Maximal Cliques

4 maximal cliques

The pseudo-subset construction produces DFAs with 4 states
However we can do better, using coverings with two cliques!

Size Bounds of Smallest Compatible DFAs

Theorem 2
Let A be a dcNFA:

- There exists a compatible DFA whose number of states is bounded by the number of maximal cliques in the compatibility graph of A

Upper bound:
Number of maximal cliques in the compatibility graph

- Each DFA compatible with A should have at least as many states as the smallest number of cliques covering the compatibility graph of A

Lower bound:
Minimum number of cliques covering the compatibility graph

State Complexity

State Complexity in the General Case

Theorem 3
For each n-state dcNFA ($n \geq 2$)
there exists a compatible DFA with at most $f(n)$ states, s.t.

$$
f(n)= \begin{cases}3^{\lfloor n / 3\rfloor}, & \text { if } n \equiv 0(\bmod 3), \\ 4 \cdot 3^{\lfloor n / 3\rfloor-1}, & \text { if } n \equiv 1(\bmod 3), \\ 2 \cdot 3^{\lfloor n / 3\rfloor}, & \text { if } n \equiv 2(\bmod 3) .\end{cases}
$$

Furthermore this bound can be effectively reached

State Complexity in the General Case

Theorem 3
For each n-state dcNFA ($n \geq 2$)
there exists a compatible DFA with at most $f(n)$ states, s.t.

$$
f(n)= \begin{cases}3^{\lfloor n / 3\rfloor}, & \text { if } n \equiv 0(\bmod 3), \\ 4 \cdot 3^{\lfloor n / 3\rfloor-1}, & \text { if } n \equiv 1(\bmod 3), \\ 2 \cdot 3^{\lfloor n / 3\rfloor}, & \text { if } n \equiv 2(\bmod 3) .\end{cases}
$$

Furthermore this bound can be effectively reached
Proof
Upper bound:
$f(n)$ is the maximal number of maximal cliques in a graph with n vertices (Moon \& Moser, 1965)

Proof

Lower bound:
from the lower bound for the conversion of self-verifying automata into DFAs (Jirásková \& Pighizzini, 2011)

Proof

Lower bound:
from the lower bound for the conversion of self-verifying automata into DFAs (Jirásková \& Pighizzini, 2011)

With a single initial state (but nondeterministic transitions), the optimal state bound remains the same

State Complexity in the Deterministic Case

Let A be an n-state dcDFA

- There exists a compatible DFA with n states which is obtained by arbitrarily marking each don't care state either as accepting or as rejecting
- This bound cannot be reduced Worst case:
A does not contain any don't care state and it is minimal

Time Complexity

NP-completness

Theorem 4
The following problem is NP-complete:

> Given a dcNFA A and an integer $k>0$, does there exist a compatible DFA with $\leq k$ states?

NP-completness

Theorem 4
The following problem is NP-complete:
Given a dcNFA A and an integer $k>0$, does there exist a compatible DFA with $\leq k$ states?
Proof.
In polynomial time we can

- nondeterministically generate a DFA B with $\leq k$ states
- verify that B is compatible with A, as follows: for each reachable state (p, q) in the "product" of A and B the following conditions should be verified
- if p accepting in A then q is final in B
- if p rejecting in A then q is nonfinal in B

NP-hardness follows from (Pfleeger, 1973)
(even if A is a dcDFA!)

NP-completness

Theorem 4
The following problem is NP-complete:
Given a dcNFA A and an integer $k>0$, does there exist a compatible DFA with $\leq k$ states?
Proof.
In polynomial time we can

- nondeterministically generate a DFA B with $\leq k$ states
- verify that B is compatible with A, as follows: for each reachable state (p, q) in the "product" of A and B the following conditions should be verified
- if p accepting in A then q is final in B
- if p rejecting in A then q is nonfinal in B

NP-hardness follows from (Pfleeger, 1973)
(even if A is a dcDFA!)

Conclusion

Our Contributions

- Characterization of DFAs compatible with each given dcNFA
- Pseudo-subset construction
- Upper and lower bounds for the number of states of the smallest compatible DFA
- NP-completeness of the reduction of dcDFAs and dcNFAs to minimal compatible DFAs
- dcNFAs over a one-letter alphabet

Some Possible Future Investigations

- Classes of dcNFAs with compatible DFAs of polynomial size
- Operations on dcNFAs and their state complexity
- Extension of don't care notion to other devices

Thank you for your attention!

