Investigations on Automata and Languages over a Unary Alphabet

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

CIAA 2014 - Gießen, Germany
July 30 - August 2, 2014

Unary or Tally Languages

- One letter alphabet $\Sigma=\{a\}$
- Many differences with the general case have been discovered First example:
Theorem [Ginsurg\&Rice '62]
Each unary context-free languages is regular
- Structural complexity: classes of tally sets
- Hartmanis, 1972
- Book, 1974, 1979
- ...

Space complexity:

- Alt\&Mehlhorn, 1975
- Geffert, 1993
- ...

Unary or Tally Languages

This talk:

- Focus mainly on descriptional complexity aspects
- Optimal simulations between variants of unary automata
- Unary two-way automata:
connection with the question $\mathrm{L} \stackrel{?}{=} \mathrm{NL}$
- Unary context-free grammars and pushdown automata
- Devices accepting nonregular languages

Unary Automata

Unary One-Way Deterministic Automata (1DFAs)

The structure is very simple!

Theorem
$L \subseteq\{a\}^{*}$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

$$
\forall n \geq \mu: a^{n} \in L \text { iff } a^{n+\lambda} \in L
$$

When $\mu=0$ the language L is said to be cyclic

Unary One-Way Nondeterministic Automata (1NFAs)

The structure can be very complicate!
Each direct graph with

- a vertex selected as initial state
- some vertices selected as final states
is the transition diagram of a unary 1NFA!

However, we can always obtain an equivalent 1NFA with a

- simple and
- not too big
transition graph

Chrobak Normal Form for 1NFAs

- An initial deterministic path
- Some disjoint deterministic loops
- Only one nondeterministic decision

Theorem ([Chrobak '86])

Each unary n-state 1NFA can be converted into an equivalent 1NFA in Chrobak normal form with

- an initial path of $O\left(n^{2}\right)$ states
- total number of states in the loops $\leq n$

Conversion to Chrobak Normal Form for 1NFAs

- Subtle error in the original proof fixed by To (2009)
- Different transformation proposed by Geffert (2007)
- Polynomial time conversion algorithms by Martinez (2004), Gawrychowski (2011), Sawa (2013)
- From the results by Geffert and Gawrychowski:
- length of the initial path $\leq n^{2}-n$
- total number of states in the loops $\leq n-1$ (except when the given 1NFA is the trivial loop of n states)

Removing Nondeterminism from Unary Automata

- Keep the same initial path
- Simulate all the loops "in parallel"
- A loop of $\operatorname{Icm}\left\{\ell_{1}, \ell_{2}, \ldots\right\}$ many states is enough
- Total number of states $\leq \mu+\operatorname{lcm}\left\{\ell_{1}, \ell_{2}, \ldots\right\}$
- From a n-state $1 N F A$:

$$
\mu=O\left(n^{2}\right), \quad \ell_{1}+\ell_{2}+\cdots \leq n
$$

How large can be $\operatorname{Icm}\left\{\ell_{1}, \ell_{2}, \ldots\right\}$?

$$
F(n)=\max \left\{\operatorname{lcm}\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{s}\right\} \mid s \geq 1 \wedge \ell_{1}+\ell_{2}+\cdots+\ell_{s} \leq n\right\}
$$

Landau's function (1903)

$$
F(n)=\mathrm{e}^{\Theta(\sqrt{n \ln n})}[\text { Szalay '80] }
$$

Removing Nondeterminism from Unary Automata

- Keep the same initial path
- Simulate all the loops "in parallel"
- A loop of $\operatorname{Icm}\left\{\ell_{1}, \ell_{2}, \ldots\right\}$ many states is enough
- Total number of states $\leq \mu+\operatorname{Icm}\left\{\ell_{1}, \ell_{2}, \ldots\right\}$
- From a n-state 1 NFA:

$$
\mu=O\left(n^{2}\right), \quad \ell_{1}+\ell_{2}+\cdots \leq n
$$

- $F(n)$ states are also necessary in the worst case [Chrobak '86]

Theorem ([Ljubič '64, Chrobak '86])
The state cost of the simulation of unary n-state 1NFAs by equivalent 1DFAs is $\mathrm{e}^{\Theta(\sqrt{n \ln n})}$

From Chrobak Normal Form to Two-Way Automata

- Check if the input is "short" and accepted on the initial path

$$
\mu+1 \text { states }
$$

- Check if the input is accepted on the first loop $\quad \ell_{1}$ states
- Check if the input is accepted on the second loop $\quad \ell_{2}$ states
- Check if the input is accepted on the third loop $\quad \ell_{3}$ states
$\mu+\ell_{1}+\ell_{2}+\cdots+2$ states are sufficient!
This number is also necessary in the worst case [Chrobak '86]

Theorem

The state cost of the simulation of unary n-state 1NFAs by 2DFAs is $\Theta\left(n^{2}\right)$

Optimal Simulations Between Unary Automata

[Chrobak '86, Mereghetti\&P.'01]

Optimal Simulations Between Unary Automata

2NFA \rightarrow 2DFA Open!

- upper bound $\mathrm{e}^{\Theta(\sqrt{n \ln n})}$ (from 2NFA \rightarrow 1DFA)
- lower bound $\Omega\left(n^{2}\right)$ (from 1NFA \rightarrow 2DFA)
Better upper bound $e^{O\left(\ln ^{2} n\right)}$ [Geffert\&Mereghetti\&P.'03]

Unary Two-Way Automata

Two-Way Automata: Few Technical Details

- Input surrounded by the end-markers \triangleright and \triangleleft
- $w \in \Sigma^{*}$ is accepted iff there is a computation
- with input tape $\triangleright w \triangleleft$
- starting with the head on \triangleright in the initial state
- reaching a final state (with the head on \triangleright)

Almost Equivalent Automata

Definition

Two automata A and B are almost equivalent if $L(A)$ and $L(B)$ differ for finitely many strings

Chrobak Normal Form Revisited

Each unary n-state 1NFA A is almost equivalent to a 1NFA B :

- s disjoint loops of lengths $\ell_{1}, \ldots, \ell_{s}$, with $\ell_{1}+\cdots+\ell_{s} \leq n$
- at the beginning of the computation,
B nondeterministically selects a loop $i \in\{1, \ldots, s\}$
- then B counts the input length modulo ℓ_{i}
- $L(A)$ and $L(B)$ can differ only on strings of length at most $n^{2}-n$

A Normal Form for Unary 2NFAs

Theorem ([Geffert\&Mereghetti\&P.'03])
For each unary n-state 2NFA A there exists an almost equivalent 2NFA M s.t.

- M makes nondeterministic choices and changes the head direction only visiting the end-markers
- M has $N \leq 2 n+2$ many states
- $L(A)$ and $L(M)$ can differ only on strings of length $\leq 5 n^{2}$

A Normal Form for Unary 2NFAs

More details on M :

- State set: $\left\{q_{I}, q_{F}\right\} \cup Q_{1} \cup \cdots \cup Q_{s}$
- q_{I} initial state
- q_{F} accepting state

■ Q_{i} deterministic loop of length ℓ_{i}

- A computation is a sequence of traversals of the input
- In each traversal M counts the input length modulo one ℓ_{i}

Remark

If a string is accepted by M then it is accepted by a computation which visits the left end-marker at most N times

Converting Unary 2NFAs into 2DFAs
 [Geffert\&Mereghetti\&P.'03]

M unary N-state 2NFA in normal form
a^{m} input string

- For $p, q \in Q, k \geq 1$, we consider the predicate reachable $(p, q, k) \equiv$ \exists computation path on a^{m} which
- starts in the state p on \triangleright
\square ends in the state q on \triangleright
■ visits \triangleright at most k times
Then:
$a^{m} \in L(M)$ iff reachable $\left(q_{I}, q_{F}, N\right)$ is true

- reachable (p, q, k) can be computed by a recursive procedure
- Implemented by a 2DFA with $e^{O\left(\ln ^{2} N\right)}$ states

From Unary 2NFAs to 2DFAs

A given unary 2NFA
M almost equivalent 2NFA
\Downarrow
B 2DFA equivalent to M then simulation of B for longer inputs
C 2DFA equivalent to A $e^{O\left(\ln ^{2} n\right)}$ states

Theorem ([Geffert\&Mereghetti\&P.'03])
Each unary n-state 2NFA can be simulated by a 2DFA with $e^{O\left(\ln ^{2} n\right)}$ many states

Can this upper bound be reduced to a polynomial?

Upper bound

- superpolynomial
- subexponential

Logspace Classes and Graph Accessibility Problem

L : class of languages accepted in logarithmic space by deterministic machines

Problem

NL: class of languages accepted in logarithmic space by nondeterministic machines

Graph Accessibility Problem GAP

- Given $G=(V, E)$ oriented graph, $s, t \in V$
- Decide whether or not G contains a path from s to t

Theorem ([Jones '75])
GAP is complete for NL
Hence GAP $\in L$ iff $L=N L$

Reduction to GAP

M unary 2NFA in normal form, with N states

- Accepting computation on a^{m}
- sequence of traversals of the input
- starting in q_{l} on \triangleright
- ending in q_{F} on \triangleright

- Graph $G(m)$

■ vertices \equiv states

- edges \equiv traversals on a^{m}

- a^{m} is accepted iff $G(m)$ contains a path from q_{I} to q_{F}

To decide whether or not $a^{m} \in L(M)$ reduces
to decide GAP for $G(m)$

$\mathrm{L}=\mathrm{NL} \Rightarrow$ Polynomial Deterministic Simulation!

[Geffert\&P.'11]

$D_{\text {GAP }}$ logspace bounded deterministic machine solving GAP

- $O(\log N)$ space $\quad N=\#$ states of the given 2NFA M
- poly (N) different configurations
$G(m)$ graph associated with a^{m}
- $O\left(N^{2}\right)$ bits
- $\exp (N)$ different configurations
Too many!!!
- bits computed on demand: an N-state 1DFA $A_{p, q}$ tests the existence of the edge (p, q) trying to simulate a traversal of M from p to q

From Unary 2NFAs to 2DFAs (under $L=N L$)

A	given unary 2NFA	n states
\Downarrow	Conversion into normal form	
M	almost equivalent 2NFA	$N \leq 2 n+2$ states
\Downarrow		Deterministic simulation
B	2DFA equivalent to M	poly (N) states
\Downarrow	Preliminary scan to accept/reject inputs of length $\leq 5 n^{2}$	
C	then simulation of B for longer inputs	
2DFA equivalent to A	$p o l y(n)$ states	

Theorem ([Geffert\&P.'11])

If $\mathrm{L}=\mathrm{NL}$ then each unary n-state $2 N F A$ can be simulated by a 2DFA with poly(n) many states

Proving that the best known upper bound $e^{O\left(\ln ^{2} n\right)}$ is tight would separate L and NL

From Unary 2NFAs to 2DFAs (under $L=N L$)

A given unary 2NFA
n states
Conversion into normal form $N \leq 2 n+2$ states Deterministic simulation poly (N) states Preliminary scan to accept/reject inputs of length $\leq 5 n^{2}$ then simulation of B for longer inputs
C 2DFA equivalent to A poly(n) states

Theorem ([Geffert\&P.'11])

If $\mathrm{L}=\mathrm{NL}$ then each unary n-state 2NFA can be simulated by a 2DFA with poly(n) many states

> Theorem ([Kapoutsis\&P.'12])
> $\mathrm{L} /$ poly $\supseteq \mathrm{NL}$ iff each unary n-state 2NFA can be simulated by a 2 DFA with poly (n) many states

Normal Form for Unary 2NFAs: Consequences

(i) Subexponential simulation of unary 2NFAs by 2DFAs
[Geffert\&Mereghetti\&P.'03]
(ii) Polynomial simulation of unary 2NFAs by 2DFAs under the condition $\mathrm{L}=\mathrm{NL}$
(iii) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs (unconditional)
(iv) Polynomial complementation of unary 2NFAs Inductive counting argument [Geffert\&Mereghetti\&P.'07]

Pushdown Automata and Other Devices

Unary Context-Free Languages

Theorem [Ginsurg\&Rice '62]

Each unary context-free languages is regular

How large should be a finite automata equivalent to a given unary context-free grammar or pushdown automaton?

Unary Pushdown Automata

From PDAs of size s, accepting regular languages, to equivalent 1DFAs

PDary input	general input	
PDAs	$2^{\text {poly(s) }}$ [P.\&Shallit\&Wang '02]	non recursive [Meyer\&Fischer'71]
deterministic PDAs	$2^{O(s)}$ $[P . ' 09]$	$2^{2^{O(s)}}$
$[$ [Valiant '75]		

All the bounds are tight!

Auxiliary Pushdown Automata (AuxPDAs)

PDAs augmented with an auxiliary worktape
'SPACE' \equiv worktape

1AuxPDAs: How to Count the Input Length

$$
i=\left(\begin{array}{llllllll}
1 & 1 & 0 & \cdots & 1 & 0 & 0 & 0
\end{array} 1_{t_{1} t_{2}} \quad t_{t_{k-1}} \quad t_{k} .\right.
$$

1AuxPDAs: How to Count the Input Length

$22=2^{4}+2^{2}+2^{1}$

$23=2^{4}+2^{2}+2^{1}+2^{0}$

1AuxPDAs: How to Count the Input Length

Example: $\mathcal{L}_{p}=\left\{a^{2^{m}} \mid m \geq 0\right\}$

- \mathcal{L}_{p} is nonregular
- \mathcal{L}_{p} is accepted by a 1 AuxPDA M which:
- scans the input while counting its length
- accepts iff the pushdown store is empty i.e., the binary representation of the input length contains exactly one digit 1
- On input a^{n} the largest integer stored on the worktape is $\left\lfloor\log _{2} n\right\rfloor$, which is represented in $O(\log \log n)$ space

$$
\mathcal{L}_{p} \in 1 \text { AuxPDASpace }(\log \log n)
$$

Space Bounds on 1 AuxPDAs

\mathcal{L}_{p} is accepted using the minimum amount of space for nonregular languages recognition:

Theorem ([P.\&Shallit\&Wang '02])
If a unary language L is accepted by a 1AuxPDA in o $(\log \log n)$ space then L is regular

In contrast

- with a binary alphabet,
- and space measured on the 'less' expensive accepting computation:

Theorem ([Chytil '86])

For each $k \geq 2$ there is a non context-free language L_{k} accepted by a 1 AuxPDA in $O(\underbrace{\log \ldots \log n}_{k} n)$ space

Two-way Pushdown Automata (2PDAs)

- More powerful than PDAs, e.g., $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$
- 2DPDAs can be simulated by RAMs in linear time [Cook '71]

Main open problems:

- Power of nondeterminism, i.e., 2DPDAs vs 2PDA
- 2DPDAs vs linear bounded automata

Unary 2PDAs

- Very powerful models, even in the deterministic version

Theorem ([Monien '84])

The unary encoding of each language in P is accepted by a 2DPDA

- With a constant number of input head reversals they accept only regular languages [Liu\&Weiner '68]
- $\mathcal{L}_{p}=\left\{a^{2^{m}} \mid m \geq 0\right\}$
accepted by a 2DPDA making $\approx \log _{2} n$ reversals

Problem

Does there exist a unary nonregular language accepted by a 2PDA making o($\log n$) head reversals?

Multi-Head Finite Automata

- More powerful than one-head finite automata, even if the heads are one-way, e.g., $\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- Unary case:
with a constant number of head reversals they accept only regular languages [Sudborough '74]
- $\mathcal{L}_{p}=\left\{a^{2^{m}} \mid m \geq 0\right\}$ accepted by a 2-head automaton making $\approx \log _{2} n$ reversals

Problem
 Does there exist a unary nonregular language accepted by a multi-head automaton making $o(\log n)$ head reversals?

- Unary multi-head 2PDAs making $O(1)$ input head reversals accept only regular languages [Ibarra '74]

Conclusion

Final Remarks

Unary Automata and Languages

- Interesting properties and differences with respect to the general case
- Special methods (e.g., from number theory)
- Important relationships with the general case
- Several open problems

Thank you for your attention!

