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Parikh’s Image

I Σ = {a1, . . . , am} alphabet of m symbols
I Parikh’s map ψ : Σ∗ → Nm:

ψ(w) = (|w |a1 , |w |a2 , . . . , |w |am)

for each string w ∈ Σ∗

I w ′ and w ′′ are Parikh equivalent iff ψ(w ′) = ψ(w ′′)
(in symbols w ′ =πw ′′)

I Parikh’s image of a language L ⊆ Σ∗:

ψ(L) = {ψ(w) | w ∈ L}

I L′ and L′′ are Parikh equivalent iff ψ(L′) = ψ(L′′)
(in symbols L′ =π L′′)
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Parikh’s Theorem

Theorem ([Parikh ’66])
The Parikh image of a context-free language is a semilinear set,
i.e,
each context-free language is Parikh equivalent
to a regular language

Example:

I L = {anbn | n ≥ 0}
I R = (ab)∗

ψ(L) = ψ(R) = {(n, n) | n ≥ 0}

Different proofs after the original one of Parikh, e.g.
I [Goldstine ’77]: a simplified proof
I [Aceto&Ésik&Ingólfsdóttir ’02]: an equational proof
I . . .
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Purpose of the Work

Recent works investigating complexity aspects of Parikh’s Theorem:

I [Kopczyński&To ’10]:
size of the “semilinear descriptions” of Parikh images of
languages defined by NFAs and by CFGs

I [Esparza&Ganty&Kiefer&Luttenberger ’11]:
I new proof of Parikh’s Theorem
I solution to the problem below in the case of nondeterministic

automata

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G )

Our aim is to study the same problem for deterministic automata
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Why this Problem?

I We came to this problem from the investigation of automata
over a one letter alphabet

I Costs in states of optimal simulations between
different variant unary automata
(one-way/two-way, deterministic/nondeterministic)
[Chrobak ’86, Mereghetti&Pighizzini ’01]

I Context-free languages over a unary terminal alphabet
are regular [Ginsburg&Rice ’62]

I The regularity of unary CFLs is also a corollary of Parikh’s
Theorem

I Hence, unary PDAs and unary CFGs can be transformed into
finite automata
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Size: Descriptional Complexity Measures

I Finite Automata
number of states

I Context-Free Grammars
number of variables after converting
into Chomsky Normal Form
[Gruska ’73]
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Unary Context-Free Languages

Theorem ([Pighizzini&Shallit&Wang ’02])
For each unary CFG in Chomsky normal form with h variables
there are

I an equivalent NFA with at most 22h−1 + 1 states
I an equivalent DFA with less than 2h2

states
Both bounds are tight

Can we extend this result to larger alphabets?

I The class of CLFs is larger than the class of regular:
we cannot have a result of exactly the same form!

I However, we can ask about the number of states
of DFAs or NFAs Parikh equivalent to the given grammar
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Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G )

Nondeterministic automata (number of states wrt s, size of G )

Upper bound:

22O(s2)
(implicit construction from classical proof of Parikh’s Th.)

O(4s) [Esparza&Ganty&Kiefer&Luttenberger ’11]

Lower bound: Ω(2s)
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First Contribution: Bounded Context-Free Languages

Theorem

I Σ = {a1, a2, . . . , am} fixed alphabet
I G grammar in Chomsky normal form with h variables s.t.

L(G ) ⊆ a∗1a
∗
2 . . . a

∗
m

There exists a DFA A with at most 2hO(1)
states s.t. L(G ) =π L(A)



First Contribution: Proof Outline

Σ = {a1, a2, . . . , am}

I Restriction to strongly bounded grammars
G = (V ,Σ,P,S) is strongly bounded iff
for all A ∈ V , there are i ≤ j s.t.
LA = {x ∈ Σ∗ | A ?⇒ x} ⊆ a+

i a
∗
i+1 · · · a∗j−1a

+
j

I A ∈ V is said to be unary iff LA ⊆ a+
i for some i

in this case LA is accepted by a DFA with < 2h2
states

[Pighizzini&Shallit&Wang ’02]

I The use of nonunary variables is very restricted:
If S ?⇒ α then α contains ≤ m − 1 nonunary variables

Hence a finite control of size O(hm−1) can keep track of them
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by simulating a particular
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First Contribution: Proof Outline

I This derivation process is simulated by an automaton which
tests the matching between generated terminals and input
symbols

I At each step the automaton needs to remember at most
#Σ− 1 variables

I The process is nondeterministic
I It can be implemented using O(h#Σ−1) states
I Hence, a deterministic control can be implemented

with 2poly(h) states
I The “unary parts” can be simulated within the same state

bound
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Second Contribution: Binary Context-Free Languages

Theorem
Let G grammar in Chomsky normal form with h variables with a
binary terminal alphabet.
Then there is a DFA A with at most 2hO(1)

states s.t. L(A)=πL(G )

The proof relies the following results:

Lemma ([Kopczyński&To ’10])
For G as in the theorem, it holds that ψ(L(G )) =

⋃
i∈I Zi where:

I I is a set of indices with #I = O(h2)

I Zi =
⋃
α0∈Wi

{α0 + α1,in + α2,im | n,m ≥ 0}
I Wi ⊆ N2 is finite
I integers in Wi , α1,i , α2,i do not exceed 2hc

, where c > 0

From sets Zi it is possible to derive “small” DFAs and, by standard
constructions, the DFA A s.t. L(A)=πL(G )
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Optimality

I For each CFG in Chomsky normal form with h variables
we provided a Parikh equivalent DFA with 2hO(1)

states
in the following cases:

I bounded languages
I binary languages

I This upper bound cannot be reduced
(consequence of the unary case)
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Open Questions

Is it possible to extend these results to
all context-free languages?

I Bounded case
crucial argument: it is enough to remember #Σ− 1 variables

I Binary case
the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:
I What about word bounded CFLs?

i.e., subsets of w∗1w
∗
2 . . .w

∗
m, where each wi is a string

I In our construction the cost is double exponential in the size of
the alphabet: state whether or not this is optimal
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