
Parikh’s Theorem and Descriptional Complexity

Giovanna J. Lavado and Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano

SOFSEM 2012
Špindlerův Mlýn, Czech Republic

January 21–27, 2012

Parikh’s Image

I Σ = {a1, . . . , am} alphabet of m symbols
I Parikh’s map ψ : Σ∗ → Nm:

ψ(w) = (|w |a1 , |w |a2 , . . . , |w |am)

for each string w ∈ Σ∗

I w ′ and w ′′ are Parikh equivalent iff ψ(w ′) = ψ(w ′′)
(in symbols w ′ =πw ′′)

I Parikh’s image of a language L ⊆ Σ∗:

ψ(L) = {ψ(w) | w ∈ L}

I L′ and L′′ are Parikh equivalent iff ψ(L′) = ψ(L′′)
(in symbols L′ =π L′′)

Parikh’s Image

I Σ = {a1, . . . , am} alphabet of m symbols
I Parikh’s map ψ : Σ∗ → Nm:

ψ(w) = (|w |a1 , |w |a2 , . . . , |w |am)

for each string w ∈ Σ∗

I w ′ and w ′′ are Parikh equivalent iff ψ(w ′) = ψ(w ′′)
(in symbols w ′ =πw ′′)

I Parikh’s image of a language L ⊆ Σ∗:

ψ(L) = {ψ(w) | w ∈ L}

I L′ and L′′ are Parikh equivalent iff ψ(L′) = ψ(L′′)
(in symbols L′ =π L′′)

Parikh’s Image

I Σ = {a1, . . . , am} alphabet of m symbols
I Parikh’s map ψ : Σ∗ → Nm:

ψ(w) = (|w |a1 , |w |a2 , . . . , |w |am)

for each string w ∈ Σ∗

I w ′ and w ′′ are Parikh equivalent iff ψ(w ′) = ψ(w ′′)
(in symbols w ′ =πw ′′)

I Parikh’s image of a language L ⊆ Σ∗:

ψ(L) = {ψ(w) | w ∈ L}

I L′ and L′′ are Parikh equivalent iff ψ(L′) = ψ(L′′)
(in symbols L′ =π L′′)

Parikh’s Image

I Σ = {a1, . . . , am} alphabet of m symbols
I Parikh’s map ψ : Σ∗ → Nm:

ψ(w) = (|w |a1 , |w |a2 , . . . , |w |am)

for each string w ∈ Σ∗

I w ′ and w ′′ are Parikh equivalent iff ψ(w ′) = ψ(w ′′)
(in symbols w ′ =πw ′′)

I Parikh’s image of a language L ⊆ Σ∗:

ψ(L) = {ψ(w) | w ∈ L}

I L′ and L′′ are Parikh equivalent iff ψ(L′) = ψ(L′′)
(in symbols L′ =π L′′)

Parikh’s Image

I Σ = {a1, . . . , am} alphabet of m symbols
I Parikh’s map ψ : Σ∗ → Nm:

ψ(w) = (|w |a1 , |w |a2 , . . . , |w |am)

for each string w ∈ Σ∗

I w ′ and w ′′ are Parikh equivalent iff ψ(w ′) = ψ(w ′′)
(in symbols w ′ =πw ′′)

I Parikh’s image of a language L ⊆ Σ∗:

ψ(L) = {ψ(w) | w ∈ L}

I L′ and L′′ are Parikh equivalent iff ψ(L′) = ψ(L′′)
(in symbols L′ =π L′′)

Parikh’s Theorem

Theorem ([Parikh ’66])
The Parikh image of a context-free language is a semilinear set,
i.e,
each context-free language is Parikh equivalent
to a regular language

Example:

I L = {anbn | n ≥ 0}
I R = (ab)∗

ψ(L) = ψ(R) = {(n, n) | n ≥ 0}

Different proofs after the original one of Parikh, e.g.
I [Goldstine ’77]: a simplified proof
I [Aceto&Ésik&Ingólfsdóttir ’02]: an equational proof
I . . .

Parikh’s Theorem

Theorem ([Parikh ’66])
The Parikh image of a context-free language is a semilinear set,
i.e,
each context-free language is Parikh equivalent
to a regular language

Example:

I L = {anbn | n ≥ 0}
I R = (ab)∗

ψ(L) = ψ(R) = {(n, n) | n ≥ 0}

Different proofs after the original one of Parikh, e.g.
I [Goldstine ’77]: a simplified proof
I [Aceto&Ésik&Ingólfsdóttir ’02]: an equational proof
I . . .

Parikh’s Theorem

Theorem ([Parikh ’66])
The Parikh image of a context-free language is a semilinear set,
i.e,
each context-free language is Parikh equivalent
to a regular language

Example:

I L = {anbn | n ≥ 0}
I R = (ab)∗

ψ(L) = ψ(R) = {(n, n) | n ≥ 0}

Different proofs after the original one of Parikh, e.g.
I [Goldstine ’77]: a simplified proof
I [Aceto&Ésik&Ingólfsdóttir ’02]: an equational proof
I . . .

Purpose of the Work

Recent works investigating complexity aspects of Parikh’s Theorem:

I [Kopczyński&To ’10]:
size of the “semilinear descriptions” of Parikh images of
languages defined by NFAs and by CFGs

I [Esparza&Ganty&Kiefer&Luttenberger ’11]:
I new proof of Parikh’s Theorem
I solution to the problem below in the case of nondeterministic

automata

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Our aim is to study the same problem for deterministic automata

Purpose of the Work

Recent works investigating complexity aspects of Parikh’s Theorem:

I [Kopczyński&To ’10]:
size of the “semilinear descriptions” of Parikh images of
languages defined by NFAs and by CFGs

I [Esparza&Ganty&Kiefer&Luttenberger ’11]:
I new proof of Parikh’s Theorem
I solution to the problem below in the case of nondeterministic

automata

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Our aim is to study the same problem for deterministic automata

Purpose of the Work

Recent works investigating complexity aspects of Parikh’s Theorem:

I [Kopczyński&To ’10]:
size of the “semilinear descriptions” of Parikh images of
languages defined by NFAs and by CFGs

I [Esparza&Ganty&Kiefer&Luttenberger ’11]:
I new proof of Parikh’s Theorem
I solution to the problem below in the case of nondeterministic

automata

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Our aim is to study the same problem for deterministic automata

Purpose of the Work

Recent works investigating complexity aspects of Parikh’s Theorem:

I [Kopczyński&To ’10]:
size of the “semilinear descriptions” of Parikh images of
languages defined by NFAs and by CFGs

I [Esparza&Ganty&Kiefer&Luttenberger ’11]:
I new proof of Parikh’s Theorem
I solution to the problem below in the case of nondeterministic

automata

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Our aim is to study the same problem for deterministic automata

Purpose of the Work

Recent works investigating complexity aspects of Parikh’s Theorem:

I [Kopczyński&To ’10]:
size of the “semilinear descriptions” of Parikh images of
languages defined by NFAs and by CFGs

I [Esparza&Ganty&Kiefer&Luttenberger ’11]:
I new proof of Parikh’s Theorem
I solution to the problem below in the case of nondeterministic

automata

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Our aim is to study the same problem for deterministic automata

Why this Problem?

I We came to this problem from the investigation of automata
over a one letter alphabet

I Costs in states of optimal simulations between
different variant unary automata
(one-way/two-way, deterministic/nondeterministic)
[Chrobak ’86, Mereghetti&Pighizzini ’01]

I Context-free languages over a unary terminal alphabet
are regular [Ginsburg&Rice ’62]

I The regularity of unary CFLs is also a corollary of Parikh’s
Theorem

I Hence, unary PDAs and unary CFGs can be transformed into
finite automata

Why this Problem?

I We came to this problem from the investigation of automata
over a one letter alphabet

I Costs in states of optimal simulations between
different variant unary automata
(one-way/two-way, deterministic/nondeterministic)
[Chrobak ’86, Mereghetti&Pighizzini ’01]

I Context-free languages over a unary terminal alphabet
are regular [Ginsburg&Rice ’62]

I The regularity of unary CFLs is also a corollary of Parikh’s
Theorem

I Hence, unary PDAs and unary CFGs can be transformed into
finite automata

Why this Problem?

I We came to this problem from the investigation of automata
over a one letter alphabet

I Costs in states of optimal simulations between
different variant unary automata
(one-way/two-way, deterministic/nondeterministic)
[Chrobak ’86, Mereghetti&Pighizzini ’01]

I Context-free languages over a unary terminal alphabet
are regular [Ginsburg&Rice ’62]

I The regularity of unary CFLs is also a corollary of Parikh’s
Theorem

I Hence, unary PDAs and unary CFGs can be transformed into
finite automata

Why this Problem?

I We came to this problem from the investigation of automata
over a one letter alphabet

I Costs in states of optimal simulations between
different variant unary automata
(one-way/two-way, deterministic/nondeterministic)
[Chrobak ’86, Mereghetti&Pighizzini ’01]

I Context-free languages over a unary terminal alphabet
are regular [Ginsburg&Rice ’62]

I The regularity of unary CFLs is also a corollary of Parikh’s
Theorem

I Hence, unary PDAs and unary CFGs can be transformed into
finite automata

Why this Problem?

I We came to this problem from the investigation of automata
over a one letter alphabet

I Costs in states of optimal simulations between
different variant unary automata
(one-way/two-way, deterministic/nondeterministic)
[Chrobak ’86, Mereghetti&Pighizzini ’01]

I Context-free languages over a unary terminal alphabet
are regular [Ginsburg&Rice ’62]

I The regularity of unary CFLs is also a corollary of Parikh’s
Theorem

I Hence, unary PDAs and unary CFGs can be transformed into
finite automata

Size: Descriptional Complexity Measures

I Finite Automata
number of states

I Context-Free Grammars
number of variables after converting
into Chomsky Normal Form
[Gruska ’73]

Size: Descriptional Complexity Measures

I Finite Automata
number of states

I Context-Free Grammars
number of variables after converting
into Chomsky Normal Form
[Gruska ’73]

Unary Context-Free Languages

Theorem ([Pighizzini&Shallit&Wang ’02])
For each unary CFG in Chomsky normal form with h variables
there are

I an equivalent NFA with at most 22h−1 + 1 states
I an equivalent DFA with less than 2h2

states
Both bounds are tight

Can we extend this result to larger alphabets?

I The class of CLFs is larger than the class of regular:
we cannot have a result of exactly the same form!

I However, we can ask about the number of states
of DFAs or NFAs Parikh equivalent to the given grammar

Unary Context-Free Languages

Theorem ([Pighizzini&Shallit&Wang ’02])
For each unary CFG in Chomsky normal form with h variables
there are

I an equivalent NFA with at most 22h−1 + 1 states
I an equivalent DFA with less than 2h2

states
Both bounds are tight

Can we extend this result to larger alphabets?

I The class of CLFs is larger than the class of regular:
we cannot have a result of exactly the same form!

I However, we can ask about the number of states
of DFAs or NFAs Parikh equivalent to the given grammar

Unary Context-Free Languages

Theorem ([Pighizzini&Shallit&Wang ’02])
For each unary CFG in Chomsky normal form with h variables
there are

I an equivalent NFA with at most 22h−1 + 1 states
I an equivalent DFA with less than 2h2

states
Both bounds are tight

Can we extend this result to larger alphabets?

I The class of CLFs is larger than the class of regular:
we cannot have a result of exactly the same form!

I However, we can ask about the number of states
of DFAs or NFAs Parikh equivalent to the given grammar

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Nondeterministic automata (number of states wrt s, size of G)

Upper bound:

22O(s2)
(implicit construction from classical proof of Parikh’s Th.)

O(4s) [Esparza&Ganty&Kiefer&Luttenberger ’11]

Lower bound: Ω(2s)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Nondeterministic automata (number of states wrt s, size of G)

Upper bound:

22O(s2)
(implicit construction from classical proof of Parikh’s Th.)

O(4s) [Esparza&Ganty&Kiefer&Luttenberger ’11]

Lower bound: Ω(2s)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Nondeterministic automata (number of states wrt s, size of G)

Upper bound:

22O(s2)
(implicit construction from classical proof of Parikh’s Th.)

O(4s) [Esparza&Ganty&Kiefer&Luttenberger ’11]

Lower bound: Ω(2s)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Nondeterministic automata (number of states wrt s, size of G)

Upper bound:

22O(s2)
(implicit construction from classical proof of Parikh’s Th.)

O(4s) [Esparza&Ganty&Kiefer&Luttenberger ’11]

Lower bound: Ω(2s)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Nondeterministic automata (number of states wrt s, size of G)

Upper bound:

22O(s2)
(implicit construction from classical proof of Parikh’s Th.)

O(4s) [Esparza&Ganty&Kiefer&Luttenberger ’11]

Lower bound: Ω(2s)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Deterministic automata (number of states wrt s, size of G)

Upper bound: 2O(4s) (subset construction)

Lower bound: 2s2
(from the unary case)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Deterministic automata (number of states wrt s, size of G)

Upper bound: 2O(4s) (subset construction)

Lower bound: 2s2
(from the unary case)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Deterministic automata (number of states wrt s, size of G)

Upper bound: 2O(4s) (subset construction)

Lower bound: 2s2
(from the unary case)

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Deterministic automata (number of states wrt s, size of G)

Upper bound: 2O(4s) (subset construction)

Lower bound: 2s2
(from the unary case)

Is it possible to reduce the gap between
the upper and the lower bound?

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Deterministic automata (number of states wrt s, size of G)

Upper bound: 2O(4s) (subset construction)

Lower bound: 2s2
(from the unary case)

We reduced the upper bound to 2sO(1)

in the following cases:

I bounded context-free languages
i.e, context-free subsets of a∗1a

∗
2 . . . a

∗
m (m ≥ 2)

I context-free languages over two-letter alphabets

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Deterministic automata (number of states wrt s, size of G)

Upper bound: 2O(4s) (subset construction)

Lower bound: 2s2
(from the unary case)

We reduced the upper bound to 2sO(1)

in the following cases:

I bounded context-free languages
i.e, context-free subsets of a∗1a

∗
2 . . . a

∗
m (m ≥ 2)

I context-free languages over two-letter alphabets

Upper and Lower Bounds

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to L(G)

Deterministic automata (number of states wrt s, size of G)

Upper bound: 2O(4s) (subset construction)

Lower bound: 2s2
(from the unary case)

We reduced the upper bound to 2sO(1)

in the following cases:

I bounded context-free languages
i.e, context-free subsets of a∗1a

∗
2 . . . a

∗
m (m ≥ 2)

I context-free languages over two-letter alphabets

First Contribution: Bounded Context-Free Languages

Theorem

I Σ = {a1, a2, . . . , am} fixed alphabet
I G grammar in Chomsky normal form with h variables s.t.

L(G) ⊆ a∗1a
∗
2 . . . a

∗
m

There exists a DFA A with at most 2hO(1)
states s.t. L(G) =π L(A)

First Contribution: Proof Outline

Σ = {a1, a2, . . . , am}

I Restriction to strongly bounded grammars
G = (V ,Σ,P,S) is strongly bounded iff
for all A ∈ V , there are i ≤ j s.t.
LA = {x ∈ Σ∗ | A ?⇒ x} ⊆ a+

i a
∗
i+1 · · · a∗j−1a

+
j

I A ∈ V is said to be unary iff LA ⊆ a+
i for some i

in this case LA is accepted by a DFA with < 2h2
states

[Pighizzini&Shallit&Wang ’02]

I The use of nonunary variables is very restricted:
If S ?⇒ α then α contains ≤ m − 1 nonunary variables

Hence a finite control of size O(hm−1) can keep track of them

First Contribution: Proof Outline

Σ = {a1, a2, . . . , am}

I Restriction to strongly bounded grammars
G = (V ,Σ,P,S) is strongly bounded iff
for all A ∈ V , there are i ≤ j s.t.
LA = {x ∈ Σ∗ | A ?⇒ x} ⊆ a+

i a
∗
i+1 · · · a∗j−1a

+
j

I A ∈ V is said to be unary iff LA ⊆ a+
i for some i

in this case LA is accepted by a DFA with < 2h2
states

[Pighizzini&Shallit&Wang ’02]

I The use of nonunary variables is very restricted:
If S ?⇒ α then α contains ≤ m − 1 nonunary variables

Hence a finite control of size O(hm−1) can keep track of them

First Contribution: Proof Outline

Σ = {a1, a2, . . . , am}

I Restriction to strongly bounded grammars
G = (V ,Σ,P,S) is strongly bounded iff
for all A ∈ V , there are i ≤ j s.t.
LA = {x ∈ Σ∗ | A ?⇒ x} ⊆ a+

i a
∗
i+1 · · · a∗j−1a

+
j

I A ∈ V is said to be unary iff LA ⊆ a+
i for some i

in this case LA is accepted by a DFA with < 2h2
states

[Pighizzini&Shallit&Wang ’02]

I The use of nonunary variables is very restricted:
If S ?⇒ α then α contains ≤ m − 1 nonunary variables

Hence a finite control of size O(hm−1) can keep track of them

First Contribution: Proof Outline

Σ = {a1, a2, . . . , am}

I Restriction to strongly bounded grammars
G = (V ,Σ,P,S) is strongly bounded iff
for all A ∈ V , there are i ≤ j s.t.
LA = {x ∈ Σ∗ | A ?⇒ x} ⊆ a+

i a
∗
i+1 · · · a∗j−1a

+
j

I A ∈ V is said to be unary iff LA ⊆ a+
i for some i

in this case LA is accepted by a DFA with < 2h2
states

[Pighizzini&Shallit&Wang ’02]

I The use of nonunary variables is very restricted:
If S ?⇒ α then α contains ≤ m − 1 nonunary variables

Hence a finite control of size O(hm−1) can keep track of them

First Contribution: Proof Outline

Σ = {a1, a2, . . . , am}

I Restriction to strongly bounded grammars
G = (V ,Σ,P,S) is strongly bounded iff
for all A ∈ V , there are i ≤ j s.t.
LA = {x ∈ Σ∗ | A ?⇒ x} ⊆ a+

i a
∗
i+1 · · · a∗j−1a

+
j

I A ∈ V is said to be unary iff LA ⊆ a+
i for some i

in this case LA is accepted by a DFA with < 2h2
states

[Pighizzini&Shallit&Wang ’02]

I The use of nonunary variables is very restricted:
If S ?⇒ α then α contains ≤ m − 1 nonunary variables

Hence a finite control of size O(hm−1) can keep track of them

First Contribution: Proof Outline

Σ = {a1, a2, . . . , am}

I Restriction to strongly bounded grammars
G = (V ,Σ,P,S) is strongly bounded iff
for all A ∈ V , there are i ≤ j s.t.
LA = {x ∈ Σ∗ | A ?⇒ x} ⊆ a+

i a
∗
i+1 · · · a∗j−1a

+
j

I A ∈ V is said to be unary iff LA ⊆ a+
i for some i

in this case LA is accepted by a DFA with < 2h2
states

[Pighizzini&Shallit&Wang ’02]

I The use of nonunary variables is very restricted:
If S ?⇒ α then α contains ≤ m − 1 nonunary variables

Hence a finite control of size O(hm−1) can keep track of them

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′ Y

��
��

HH
HH

Z

�� @@

a

A′ Z ′

�� @@

b

B′Z

�� @@

a

A′ Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′ Y

��
��

HH
HH

Z

�� @@

a

A′ Z ′

�� @@

b

B′Z

�� @@

a

A′ Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3

I Unary variables:
A,A′,B,B ′,C ,C ′

I LS , LY ⊆ a+b∗c+

I LZ , LZ ′ ⊆ a+b+

I LW , LW ′ ⊆ b+c+

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′ Y

��
��

HH
HH

Z

�� @@

a

A′ Z ′

�� @@

b

B′Z

�� @@

a

A′ Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3

I Unary variables:
A,A′,B,B ′,C ,C ′

I LS , LY ⊆ a+b∗c+

I LZ , LZ ′ ⊆ a+b+

I LW , LW ′ ⊆ b+c+

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′ Y

��
��

HH
HH

Z

�� @@

a

A′ Z ′

�� @@

b

B′Z

�� @@

a

A′ Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3

I Unary variables:
A,A′,B,B ′,C ,C ′

I LS , LY ⊆ a+b∗c+

I LZ , LZ ′ ⊆ a+b+

I LW , LW ′ ⊆ b+c+

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′ Y

��
��

HH
HH

Z

�� @@

a

A′ Z ′

�� @@

b

B′Z

�� @@

a

A′ Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′Z

�� @@

a

A′ Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′ Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′k Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′k Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′k

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′k Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′kk k

W

�� @@

b

B′ W

�� @@

b

B′ W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′k Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′kk k

W

�� @@

b

B′k W

�� @@

b

B′k W ′

�� @@

c

C ′W

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′k Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′kk k

W

�� @@

b

B′k W

�� @@

b

B′k W ′

�� @@

c

C ′kW

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

k k

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′k Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′kk k

W

�� @@

b

B′k W

�� @@

b

B′k W ′

�� @@

c

C ′kW

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

k kk k

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

Example Σ = {a, b, c}

S

�
��
�

H
HH

H

a

A′k Y

��
��

HH
HH

Z

�� @@

a

A′k Z ′

�� @@

b

B′kZ

�� @@

a

A′k Z ′

�� @@
A

a

A′

a

A′
�� @@

b

B′kk k

W

�� @@

b

B′k W

�� @@

b

B′k W ′

�� @@

c

C ′kW

�� @@
B

b

B′

b

B′
�� @@

C

c

C ′

c

C ′
�� @@

k kk k

S ?⇒ a5b6c3 Our automaton recognizes

a2baba2b2c3b2

by simulating a particular
derivation from S

S ?⇒ a2Z ′W
?⇒ a2ZbW
?⇒ a2aZ ′bW
?⇒ a3AbW
?⇒ a3a2b2W
?⇒ a5b2b2W ′
?⇒ a5b4Bc3
?⇒ a5b4b2c3

= a5b6c3

=π a2baba2b2c3b2

First Contribution: Proof Outline

I This derivation process is simulated by an automaton which
tests the matching between generated terminals and input
symbols

I At each step the automaton needs to remember at most
#Σ− 1 variables

I The process is nondeterministic
I It can be implemented using O(h#Σ−1) states
I Hence, a deterministic control can be implemented

with 2poly(h) states
I The “unary parts” can be simulated within the same state

bound

First Contribution: Proof Outline

I This derivation process is simulated by an automaton which
tests the matching between generated terminals and input
symbols

I At each step the automaton needs to remember at most
#Σ− 1 variables

I The process is nondeterministic
I It can be implemented using O(h#Σ−1) states
I Hence, a deterministic control can be implemented

with 2poly(h) states
I The “unary parts” can be simulated within the same state

bound

First Contribution: Proof Outline

I This derivation process is simulated by an automaton which
tests the matching between generated terminals and input
symbols

I At each step the automaton needs to remember at most
#Σ− 1 variables

I The process is nondeterministic
I It can be implemented using O(h#Σ−1) states
I Hence, a deterministic control can be implemented

with 2poly(h) states
I The “unary parts” can be simulated within the same state

bound

First Contribution: Proof Outline

I This derivation process is simulated by an automaton which
tests the matching between generated terminals and input
symbols

I At each step the automaton needs to remember at most
#Σ− 1 variables

I The process is nondeterministic
I It can be implemented using O(h#Σ−1) states
I Hence, a deterministic control can be implemented

with 2poly(h) states
I The “unary parts” can be simulated within the same state

bound

First Contribution: Proof Outline

I This derivation process is simulated by an automaton which
tests the matching between generated terminals and input
symbols

I At each step the automaton needs to remember at most
#Σ− 1 variables

I The process is nondeterministic
I It can be implemented using O(h#Σ−1) states
I Hence, a deterministic control can be implemented

with 2poly(h) states
I The “unary parts” can be simulated within the same state

bound

First Contribution: Proof Outline

I This derivation process is simulated by an automaton which
tests the matching between generated terminals and input
symbols

I At each step the automaton needs to remember at most
#Σ− 1 variables

I The process is nondeterministic
I It can be implemented using O(h#Σ−1) states
I Hence, a deterministic control can be implemented

with 2poly(h) states
I The “unary parts” can be simulated within the same state

bound

Second Contribution: Binary Context-Free Languages

Theorem
Let G grammar in Chomsky normal form with h variables with a
binary terminal alphabet.
Then there is a DFA A with at most 2hO(1)

states s.t. L(A)=πL(G)

The proof relies the following results:

Lemma ([Kopczyński&To ’10])
For G as in the theorem, it holds that ψ(L(G)) =

⋃
i∈I Zi where:

I I is a set of indices with #I = O(h2)

I Zi =
⋃
α0∈Wi

{α0 + α1,in + α2,im | n,m ≥ 0}
I Wi ⊆ N2 is finite
I integers in Wi , α1,i , α2,i do not exceed 2hc

, where c > 0

From sets Zi it is possible to derive “small” DFAs and, by standard
constructions, the DFA A s.t. L(A)=πL(G)

Second Contribution: Binary Context-Free Languages

Theorem
Let G grammar in Chomsky normal form with h variables with a
binary terminal alphabet.
Then there is a DFA A with at most 2hO(1)

states s.t. L(A)=πL(G)

The proof relies the following results:

Lemma ([Kopczyński&To ’10])
For G as in the theorem, it holds that ψ(L(G)) =

⋃
i∈I Zi where:

I I is a set of indices with #I = O(h2)

I Zi =
⋃
α0∈Wi

{α0 + α1,in + α2,im | n,m ≥ 0}
I Wi ⊆ N2 is finite
I integers in Wi , α1,i , α2,i do not exceed 2hc

, where c > 0

From sets Zi it is possible to derive “small” DFAs and, by standard
constructions, the DFA A s.t. L(A)=πL(G)

Second Contribution: Binary Context-Free Languages

Theorem
Let G grammar in Chomsky normal form with h variables with a
binary terminal alphabet.
Then there is a DFA A with at most 2hO(1)

states s.t. L(A)=πL(G)

The proof relies the following results:

Lemma ([Kopczyński&To ’10])
For G as in the theorem, it holds that ψ(L(G)) =

⋃
i∈I Zi where:

I I is a set of indices with #I = O(h2)

I Zi =
⋃
α0∈Wi

{α0 + α1,in + α2,im | n,m ≥ 0}
I Wi ⊆ N2 is finite
I integers in Wi , α1,i , α2,i do not exceed 2hc

, where c > 0

From sets Zi it is possible to derive “small” DFAs and, by standard
constructions, the DFA A s.t. L(A)=πL(G)

Optimality

I For each CFG in Chomsky normal form with h variables
we provided a Parikh equivalent DFA with 2hO(1)

states
in the following cases:

I bounded languages
I binary languages

I This upper bound cannot be reduced
(consequence of the unary case)

Optimality

I For each CFG in Chomsky normal form with h variables
we provided a Parikh equivalent DFA with 2hO(1)

states
in the following cases:

I bounded languages
I binary languages

I This upper bound cannot be reduced
(consequence of the unary case)

Open Questions

Is it possible to extend these results to
all context-free languages?

I Bounded case
crucial argument: it is enough to remember #Σ− 1 variables

I Binary case
the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:
I What about word bounded CFLs?

i.e., subsets of w∗1w
∗
2 . . .w

∗
m, where each wi is a string

I In our construction the cost is double exponential in the size of
the alphabet: state whether or not this is optimal

Open Questions

Is it possible to extend these results to
all context-free languages?

I Bounded case
crucial argument: it is enough to remember #Σ− 1 variables

I Binary case
the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:
I What about word bounded CFLs?

i.e., subsets of w∗1w
∗
2 . . .w

∗
m, where each wi is a string

I In our construction the cost is double exponential in the size of
the alphabet: state whether or not this is optimal

Open Questions

Is it possible to extend these results to
all context-free languages?

I Bounded case
crucial argument: it is enough to remember #Σ− 1 variables

I Binary case
the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:
I What about word bounded CFLs?

i.e., subsets of w∗1w
∗
2 . . .w

∗
m, where each wi is a string

I In our construction the cost is double exponential in the size of
the alphabet: state whether or not this is optimal

Open Questions

Is it possible to extend these results to
all context-free languages?

I Bounded case
crucial argument: it is enough to remember #Σ− 1 variables

I Binary case
the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:
I What about word bounded CFLs?

i.e., subsets of w∗1w
∗
2 . . .w

∗
m, where each wi is a string

I In our construction the cost is double exponential in the size of
the alphabet: state whether or not this is optimal

Open Questions

Is it possible to extend these results to
all context-free languages?

I Bounded case
crucial argument: it is enough to remember #Σ− 1 variables

I Binary case
the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:
I What about word bounded CFLs?

i.e., subsets of w∗1w
∗
2 . . .w

∗
m, where each wi is a string

I In our construction the cost is double exponential in the size of
the alphabet: state whether or not this is optimal

	Introduction and Preliminaries
	The Problem
	Results
	Final Remarks

