Parikh's Theorem and Descriptional Complexity

Giovanna J. Lavado and Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione Università degli Studi di Milano

SOFSEM 2012
Špindlerův Mlýn, Czech Republic January 21-27, 2012

Parikh's Image

- $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ alphabet of m symbols
- Parikh's map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$:

$$
\psi(w)=\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)
$$

for each string $w \in \Sigma^{*}$

- w^{\prime} and $w^{\prime \prime}$ are Parikh equivalent iff $\psi\left(w^{\prime}\right)=\psi\left(w^{\prime \prime}\right)$
(in symbols $w^{\prime}=\pi w^{\prime \prime}$)
- Parikh's image of a language $L \subseteq \Sigma^{*}$:

$$
\psi(L)=\{\psi(w) \mid w \in L\}
$$

- L^{\prime} and $L^{\prime \prime}$ are Parikh equivalent iff $\psi\left(L^{\prime}\right)=\psi\left(L^{\prime \prime}\right)$ (in symbols $L^{\prime}={ }_{\pi} L^{\prime \prime}$)

Parikh's Image

- $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ alphabet of m symbols
- Parikh's map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$:

$$
\psi(w)=\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)
$$

for each string $w \in \Sigma^{*}$
> w^{\prime} and $w^{\prime \prime}$ are Parikh equivalent iff $\psi\left(w^{\prime}\right)=\psi\left(w^{\prime \prime}\right)$
(in symbols $w^{\prime}={ }_{\pi} w^{\prime \prime}$)

- Parikh's image of a language $L \subseteq \Sigma^{*}$

$$
\psi(L)=\{\psi(w) \mid w \in L\}
$$

- L^{\prime} and $L^{\prime \prime}$ are Parikh equivalent iff $\psi\left(L^{\prime}\right)=\psi\left(L^{\prime \prime}\right)$ (in symbols $L^{\prime}={ }_{\pi} L^{\prime \prime}$)

Parikh's Image

- $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ alphabet of m symbols
- Parikh's map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$:

$$
\psi(w)=\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)
$$

for each string $w \in \Sigma^{*}$

- w^{\prime} and $w^{\prime \prime}$ are Parikh equivalent iff $\psi\left(w^{\prime}\right)=\psi\left(w^{\prime \prime}\right)$ (in symbols $w^{\prime}={ }_{\pi} w^{\prime \prime}$)
- Parikh's image of a language $L \subseteq \Sigma^{*}$

$$
\psi(L)=\{\psi(w) \mid w \in L\}
$$

- L^{\prime} and $L^{\prime \prime}$ are Parikh equivalent iff $\psi\left(L^{\prime}\right)=\psi\left(L^{\prime \prime}\right)$
(in symbols $L^{\prime}={ }_{\pi} L^{\prime \prime}$)

Parikh's Image

- $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ alphabet of m symbols
- Parikh's map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$:

$$
\psi(w)=\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)
$$

for each string $w \in \Sigma^{*}$

- w^{\prime} and $w^{\prime \prime}$ are Parikh equivalent iff $\psi\left(w^{\prime}\right)=\psi\left(w^{\prime \prime}\right)$ (in symbols $w^{\prime}=\pi w^{\prime \prime}$)
- Parikh's image of a language $L \subseteq \Sigma^{*}$:

$$
\psi(L)=\{\psi(w) \mid w \in L\}
$$

- L^{\prime} and $L^{\prime \prime}$ are Parikh equivalent iff $\psi\left(L^{\prime}\right)=\psi\left(L^{\prime \prime}\right)$ (in symbols $L^{\prime}=\pi L^{\prime \prime}$)

Parikh's Image

- $\Sigma=\left\{a_{1}, \ldots, a_{m}\right\}$ alphabet of m symbols
- Parikh's map $\psi: \Sigma^{*} \rightarrow \mathbb{N}^{m}$:

$$
\psi(w)=\left(|w|_{a_{1}},|w|_{a_{2}}, \ldots,|w|_{a_{m}}\right)
$$

for each string $w \in \Sigma^{*}$

- w^{\prime} and $w^{\prime \prime}$ are Parikh equivalent iff $\psi\left(w^{\prime}\right)=\psi\left(w^{\prime \prime}\right)$ (in symbols $w^{\prime}=\pi w^{\prime \prime}$)
- Parikh's image of a language $L \subseteq \Sigma^{*}$:

$$
\psi(L)=\{\psi(w) \mid w \in L\}
$$

- L^{\prime} and $L^{\prime \prime}$ are Parikh equivalent iff $\psi\left(L^{\prime}\right)=\psi\left(L^{\prime \prime}\right)$ (in symbols $L^{\prime}=\pi L^{\prime \prime}$)

Parikh's Theorem

Theorem ([Parikh '66])

The Parikh image of a context-free language is a semilinear set, i.e, each context-free language is Parikh equivalent to a regular language

Example:

- $R=(a b)^{*}$

Different proofs after the original one of Parikh, e.g.

- [Goldstine'77]: a simplified proof
- [Aceto\&Ésik\&Ingólfsdóttir '02]: an equational proof

Parikh's Theorem

Theorem ([Parikh '66])

The Parikh image of a context-free language is a semilinear set, i.e, each context-free language is Parikh equivalent to a regular language

Example:

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$
- $R=(a b)^{*}$

$$
\psi(L)=\psi(R)=\{(n, n) \mid n \geq 0\}
$$

Different proofs after the original one of Parikh, e.g.

- [Goldstine'77]: a simplified proof
- [Aceto\&Ésik\&Ingólfsdóttir '02]: an equational proof

Parikh's Theorem

Theorem ([Parikh '66])

The Parikh image of a context-free language is a semilinear set, i.e, each context-free language is Parikh equivalent to a regular language

Example:

- $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$

$$
\psi(L)=\psi(R)=\{(n, n) \mid n \geq 0\}
$$

- $R=(a b)^{*}$

Different proofs after the original one of Parikh, e.g.

- [Goldstine'77]: a simplified proof
- [Aceto\&Ésik\&Ingólfsdóttir '02]: an equational proof

Purpose of the Work

Recent works investigating complexity aspects of Parikh's Theorem:

Purpose of the Work

Recent works investigating complexity aspects of Parikh's Theorem:

- [Kopczyński\&To'10]:
size of the "semilinear descriptions" of Parikh images of languages defined by NFAs and by CFGs

```
* [Esparza&Ganty&Kiefer&Luttenberger '11]
    * new proof of Parikh's Theorem
    - solution to the problem below in the case of nondeterministic
                automata
```

Problem
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages
that are Parikh equivalent to $L(G)$

Purpose of the Work

Recent works investigating complexity aspects of Parikh's Theorem:

- [Kopczyński\&To'10]:
size of the "semilinear descriptions" of Parikh images of languages defined by NFAs and by CFGs
- [Esparza\&Ganty\&Kiefer\&Luttenberger '11]:
- new proof of Parikh's Theorem
- solution to the problem below in the case of nondeterministic automata
\square
Given a CFG G compare the size of G
with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Purpose of the Work

Recent works investigating complexity aspects of Parikh's Theorem:

- [Kopczyński\&To '10]:
size of the "semilinear descriptions" of Parikh images of languages defined by NFAs and by CFGs
- [Esparza\&Ganty\&Kiefer\&Luttenberger '11]:
- new proof of Parikh's Theorem
- solution to the problem below in the case of nondeterministic automata

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Our aim is to study the same problem for deterministic automata

Purpose of the Work

Recent works investigating complexity aspects of Parikh's Theorem:

- [Kopczyński\&To '10]:
size of the "semilinear descriptions" of Parikh images of languages defined by NFAs and by CFGs
- [Esparza\&Ganty\&Kiefer\&Luttenberger '11]:
- new proof of Parikh's Theorem
- solution to the problem below in the case of nondeterministic automata

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Our aim is to study the same problem for deterministic automata

Why this Problem?

- We came to this problem from the investigation of automata over a one letter alphabet
- Costs in states of optimal simulations between different variant unary automata (one-way/two-way, deterministic/nondeterministic) [Chrobak'86, Mereghetti\&Pighizzini '01]
- Context-free languages over a unary terminal alphabet are regular [Ginsburg\&Rice '62]
- The regularity of unary CFLs is also a corollary of Parikh's Theorem
- Hence, unary PDAs and unary CFGs can be transformed into finite automata

Why this Problem?

- We came to this problem from the investigation of automata over a one letter alphabet
- Costs in states of optimal simulations between different variant unary automata (one-way/two-way, deterministic/nondeterministic) [Chrobak '86, Mereghetti\&Pighizzini '01]
- Context-free languages over a unary terminal alphabet are regular [Ginsburg\&Rice '62]
- The regularity of unary CFLs is also a corollary of Parikh's Theorem
- Hence, unary PDAs and unary CFGs can be transformed into finite automata

Why this Problem?

- We came to this problem from the investigation of automata over a one letter alphabet
- Costs in states of optimal simulations between different variant unary automata (one-way/two-way, deterministic/nondeterministic) [Chrobak '86, Mereghetti\&Pighizzini '01]
- Context-free languages over a unary terminal alphabet are regular [Ginsburg\&Rice '62]
- The regularity of unary CFLs is also a corollary of Parikh's Theorem
- Hence, unary PDAs and unary CFGs can be transformed into finite automata

Why this Problem?

- We came to this problem from the investigation of automata over a one letter alphabet
- Costs in states of optimal simulations between different variant unary automata (one-way/two-way, deterministic/nondeterministic) [Chrobak '86, Mereghetti\&Pighizzini '01]
- Context-free languages over a unary terminal alphabet are regular [Ginsburg\&Rice '62]
- The regularity of unary CFLs is also a corollary of Parikh's Theorem
- Hence, unary PDAs and unary CFGs can be transformed into finite automata

Why this Problem?

- We came to this problem from the investigation of automata over a one letter alphabet
- Costs in states of optimal simulations between different variant unary automata (one-way/two-way, deterministic/nondeterministic) [Chrobak '86, Mereghetti\&Pighizzini '01]
- Context-free languages over a unary terminal alphabet are regular [Ginsburg\&Rice '62]
- The regularity of unary CFLs is also a corollary of Parikh's Theorem
- Hence, unary PDAs and unary CFGs can be transformed into finite automata

Size: Descriptional Complexity Measures

- Finite Automata number of states
number of variables after converting into Chomsky Normal Form [Gruska '73]

Size: Descriptional Complexity Measures

- Finite Automata number of states
- Context-Free Grammars
number of variables after converting into Chomsky Normal Form
[Gruska '73]

Unary Context-Free Languages

Theorem ([Pighizzini\&Shallit\&Wang '02])

For each unary CFG in Chomsky normal form with h variables there are

- an equivalent NFA with at most $2^{2 h-1}+1$ states
- an equivalent DFA with less than $2^{h^{2}}$ states

Both bounds are tight
Can we extend this result to larger alphabets?

Unary Context-Free Languages

Theorem ([Pighizzini\&Shallit\&Wang '02])

For each unary CFG in Chomsky normal form with h variables there are

- an equivalent NFA with at most $2^{2 h-1}+1$ states
- an equivalent DFA with less than $2^{h^{2}}$ states

Both bounds are tight
Can we extend this result to larger alphabets?

- The class of CLFs is larger than the class of regular: we cannot have a result of exactly the same form!
- However, we can ask about the number of states
of DFAs or NFAs Parikh equivalent to the given grammar

Unary Context-Free Languages

Theorem ([Pighizzini\&Shallit\&Wang '02])

For each unary CFG in Chomsky normal form with h variables there are

- an equivalent NFA with at most $2^{2 h-1}+1$ states
- an equivalent DFA with less than $2^{h^{2}}$ states

Both bounds are tight
Can we extend this result to larger alphabets?

- The class of CLFs is larger than the class of regular: we cannot have a result of exactly the same form!
- However, we can ask about the number of states of DFAs or NFAs Parikh equivalent to the given grammar

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Nondeterministic automata (number of states wrt s, size of G)
Upper bound:

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Nondeterministic automata (number of states wrt s, size of G)
Upper bound:

- $2^{2^{O\left(s^{2}\right)}}$
(implicit construction from classical proof of Parikh's Th.)

Lower bound: $\Omega\left(2^{5}\right)$

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Nondeterministic automata (number of states wrt s, size of G)
Upper bound:

- $2^{2^{O\left(s^{2}\right)}}$
(implicit construction from classical proof of Parikh's Th.)
- $O\left(4^{s}\right)$
[Esparza\&Ganty\&Kiefer\&Luttenberger '11]
Lower bound: $\Omega\left(2^{5}\right)$

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Nondeterministic automata (number of states wrt s, size of G)
Upper bound:

- $2^{2^{O\left(s^{2}\right)}}$
(implicit construction from classical proof of Parikh's Th.)
- $O\left(4^{s}\right)$
[Esparza\&Ganty\&Kiefer\&Luttenberger '11]
Lower bound: $\Omega\left(2^{5}\right)$

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Deterministic automata (number of states wrt s, size of G)
Upper bound: $2^{0\left(4^{5}\right)}$

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Deterministic automata (number of states wrt s, size of G)
Upper bound: $2^{O\left(4^{5}\right)}$

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Deterministic automata (number of states wrt s, size of G)

Upper bound: $2^{O\left(4^{5}\right)}$
Lower bound: $2^{s^{2}}$
(subset construction)
(from the unary case)

Upper and Lower Bounds

Problem

> Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Deterministic automata (number of states wrt s, size of G)

Upper bound: $2^{O\left(4^{5}\right)}$
Lower bound: $2^{s^{2}}$
(subset construction)
(from the unary case)

> Is it possible to reduce the gap between the upper and the lower bound?

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Deterministic automata (number of states wrt s, size of G)
Upper bound: $2^{O\left(4^{s}\right)}$
Lower bound: $2^{s^{2}}$ (subset construction)
(from the unary case)
We reduced the upper bound to $2^{5^{O(1)}}$ in the following cases:

- bounded context-free languages i.e, context-free subsets of $a_{1}^{*} a_{2}^{*} \ldots a_{m}^{*}(m \geq 2)$
- context-free languages over two-letter alphabets

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Deterministic automata (number of states wrt s, size of G)
Upper bound: $2^{O\left(4^{s}\right)}$ (subset construction)
Lower bound: $2^{s^{2}}$
(from the unary case)
We reduced the upper bound to $2^{\boldsymbol{O}^{(1)}}$ in the following cases:

- bounded context-free languages
i.e, context-free subsets of $a_{1}^{*} a_{2}^{*} \ldots a_{m}^{*}(m \geq 2)$
- context-free languages over two-letter alphabets

Upper and Lower Bounds

Problem

Given a CFG G compare the size of G with the sizes of finite automata accepting languages that are Parikh equivalent to $L(G)$

Deterministic automata (number of states wrt s, size of G)
Upper bound: $2^{O\left(4^{s}\right)}$
(subset construction)
Lower bound: $2^{s^{2}}$
(from the unary case)
We reduced the upper bound to $2^{\Omega^{O(1)}}$ in the following cases:

- bounded context-free languages i.e, context-free subsets of $a_{1}^{*} a_{2}^{*} \ldots a_{m}^{*}(m \geq 2)$
- context-free languages over two-letter alphabets

First Contribution: Bounded Context-Free Languages

Theorem

- $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ fixed alphabet
- G grammar in Chomsky normal form with h variables s.t. $L(G) \subseteq a_{1}^{*} a_{2}^{*} \ldots a_{m}^{*}$
There exists a DFA A with at most $2^{h^{O(1)}}$ states s.t. $L(G)={ }_{\pi} L(A)$

First Contribution: Proof Outline

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

- Restriction to strongly bounded grammars
- $A \in V$ is said to be unary iff $L_{A} \subseteq a_{i}^{+}$for some i
- The use of nonunary variables is very restricted: If $S \stackrel{\star}{\Rightarrow} \alpha$ then α contains $\leq m-1$ nonunary variables Hence a finite control of size $O\left(h^{m-1}\right)$ can keep track of them

First Contribution: Proof Outline

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

- Restriction to strongly bounded grammars

$$
\begin{aligned}
& G=(V, \Sigma, P, S) \text { is strongly bounded iff } \\
& \text { for all } A \in V \text {, there are } i \leq j \text { s.t. } \\
& L_{A}=\left\{x \in \Sigma^{*} \mid A \xlongequal{\Rightarrow} x\right\} \subseteq a_{i}^{+} a_{i+1}^{*} \cdots a_{j-1}^{*} a_{j}^{+}
\end{aligned}
$$

- $A \in V$ is said to be unary iff $L_{A} \subseteq a_{i}^{+}$for some i
- The use of nonunary variables is very restricted: If $S \stackrel{\star}{\Rightarrow} \alpha$ then α contains $\leq m-1$ nonunary variables

First Contribution: Proof Outline

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

- Restriction to strongly bounded grammars

$$
\begin{aligned}
& G=(V, \Sigma, P, S) \text { is strongly bounded iff } \\
& \text { for all } A \in V \text {, there are } i \leq j \text { s.t. } \\
& L_{A}=\left\{x \in \Sigma^{*} \mid A \stackrel{A}{\Rightarrow} x\right\} \subseteq a_{i}^{+} a_{i+1}^{*} \cdots a_{j-1}^{*} a_{j}^{+}
\end{aligned}
$$

- $A \in V$ is said to be unary iff $L_{A} \subseteq a_{i}^{+}$for some i
- The use of nonunary variables is very restricted: If $S \stackrel{\star}{\Rightarrow} \alpha$ then α contains $\leq m-1$ nonunary variables

First Contribution: Proof Outline

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

- Restriction to strongly bounded grammars

$$
\begin{aligned}
& G=(V, \Sigma, P, S) \text { is strongly bounded iff } \\
& \text { for all } A \in V \text {, there are } i \leq j \text { s.t. } \\
& L_{A}=\left\{x \in \Sigma^{*} \mid A \stackrel{A}{\Rightarrow} x\right\} \subseteq a_{i}^{+} a_{i+1}^{*} \cdots a_{j-1}^{*} a_{j}^{+}
\end{aligned}
$$

- $A \in V$ is said to be unary iff $L_{A} \subseteq a_{i}^{+}$for some i in this case L_{A} is accepted by a DFA with $<2^{h^{2}}$ states [Pighizzini\&Shallit\&Wang '02]
- The use of nonunary variables is very restricted: If $S \stackrel{\star}{\Rightarrow} \alpha$ then α contains $\leq m-1$ nonunary variables

Hence a finite control of size $O\left(h^{m-1}\right)$ can keep track of them

First Contribution: Proof Outline

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

- Restriction to strongly bounded grammars

$$
\begin{aligned}
& G=(V, \Sigma, P, S) \text { is strongly bounded iff } \\
& \text { for all } A \in V \text {, there are } i \leq j \text { s.t. } \\
& L_{A}=\left\{x \in \Sigma^{*} \mid A \stackrel{A}{\Rightarrow} x\right\} \subseteq a_{i}^{+} a_{i+1}^{*} \cdots a_{j-1}^{*} a_{j}^{+}
\end{aligned}
$$

- $A \in V$ is said to be unary iff $L_{A} \subseteq a_{i}^{+}$for some i in this case L_{A} is accepted by a DFA with $<2^{h^{2}}$ states [Pighizzini\&Shallit\&Wang '02]
- The use of nonunary variables is very restricted:

$$
\text { If } S \stackrel{\star}{\Rightarrow} \alpha \text { then } \alpha \text { contains } \leq m-1 \text { nonunary variables }
$$

Hence a finite control of size $O\left(h^{m-1}\right)$ can keep track of them

First Contribution: Proof Outline

$$
\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}
$$

- Restriction to strongly bounded grammars

$$
\begin{aligned}
& G=(V, \Sigma, P, S) \text { is strongly bounded iff } \\
& \text { for all } A \in V \text {, there are } i \leq j \text { s.t. } \\
& L_{A}=\left\{x \in \Sigma^{*} \mid A \stackrel{\star}{\Rightarrow} x\right\} \subseteq a_{i}^{+} a_{i+1}^{*} \cdots a_{j-1}^{*} a_{j}^{+}
\end{aligned}
$$

- $A \in V$ is said to be unary iff $L_{A} \subseteq a_{i}^{+}$for some i in this case L_{A} is accepted by a DFA with $<2^{h^{2}}$ states [Pighizzini\&Shallit\&Wang '02]
- The use of nonunary variables is very restricted:

If $S \stackrel{\star}{\Rightarrow} \alpha$ then α contains $\leq m-1$ nonunary variables
Hence a finite control of size $O\left(h^{m-1}\right)$ can keep track of them

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

- Unary variables:
$A, A^{\prime}, B, B^{\prime}, C, C^{\prime}$
- $L_{S}, L_{Y} \subseteq a^{+} b^{*} c^{+}$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

- Unary variables:
$A, A^{\prime}, B, B^{\prime}, C, C^{\prime}$
- $L_{S}, L_{Y} \subseteq a^{+} b^{*} c^{+}$
- $L_{Z}, L_{Z^{\prime}} \subseteq a^{+} b^{+}$
- $L_{W}, L_{W^{\prime}} \subseteq b^{+} c^{+}$

Example $\Sigma=\{a, b, c\}$

Our automaton recognizes $a^{2} b a b a^{2} b^{2} c^{3} b^{2}$
by simulating a particular derivation from S
$S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W$ $\stackrel{\star}{\Rightarrow} a^{2} Z b W$
$\stackrel{+}{\Rightarrow} a^{2} a Z^{\prime} b W$ $\stackrel{\star}{\Rightarrow} a^{3} A b W$
$\stackrel{ }{\Rightarrow} a^{3} a^{2} b^{2} W$
$\Rightarrow$$a^{5} b^{2} b^{2} W^{\prime}$ $\stackrel{\star}{\Rightarrow} a^{5} b^{4} B c^{3}$
$\stackrel{ }{\Rightarrow} a^{5} b^{4} b^{2} c^{3}$
$=a^{5} b^{6} c^{3}$ $=\pi a^{2} b a b a^{2} b^{2} c^{3} b^{2}$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Our automaton recognizes $a^{2} b a b a^{2} b^{2} c^{3} b^{2}$
by simulating a particular derivation from S
$S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Our automaton recognizes
$a^{2} b a b a^{2} b^{2} c^{3} b^{2}$
by simulating a particular derivation from S
$S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W$
$\stackrel{\star}{\Rightarrow} a^{2} Z b W$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Our automaton recognizes
$a^{2} b a b a^{2} b^{2} c^{3} b^{2}$
by simulating a particular derivation from S

$$
\begin{aligned}
S & \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W \\
& \stackrel{ }{\Rightarrow} a^{2} Z b W \\
& \stackrel{\star}{\Rightarrow} a^{2} a Z^{\prime} b W
\end{aligned}
$$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Our automaton recognizes $a^{2} b a b a^{2} b^{2} c^{3} b^{2}$
by simulating a particular derivation from S

$$
\begin{aligned}
& S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W \\
& \stackrel{\star}{\Rightarrow} a^{2} Z b W \\
& \stackrel{\star}{\Rightarrow} a^{2} a Z^{\prime} b W \\
& \stackrel{\star}{\Rightarrow} a^{3} A b b W
\end{aligned}
$$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Our automaton recognizes
$a^{2} b a b a^{2} b^{2} c^{3} b^{2}$
by simulating a particular derivation from S

$$
\begin{aligned}
S & \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W \\
\stackrel{\star}{\Rightarrow} & a^{2} Z b W \\
\stackrel{\star}{\Rightarrow} & a^{2} a Z^{\prime} b W \\
\stackrel{\star}{\Rightarrow} & a^{3} A b W \\
\stackrel{\star}{\Rightarrow} & a^{3} a^{2} b^{2} W
\end{aligned}
$$

Example $\boldsymbol{\Sigma}=\{a, b, c\}$

Our automaton recognizes
$a^{2} b a b a^{2} b^{2} c^{3} b^{2}$
by simulating a particular derivation from S

$$
\begin{aligned}
& S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W \\
& \stackrel{\star}{\Rightarrow} a^{2} Z b W \\
& \stackrel{\star}{\Rightarrow} a^{2} a Z^{\prime} b W \\
& \stackrel{\star}{\Rightarrow} a^{3} A b W \\
& \stackrel{\star}{\Rightarrow} a^{3} a^{2} b^{2} W \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{2} b^{2} W^{\prime}
\end{aligned}
$$

Example $\Sigma=\{a, b, c\}$

Our automaton recognizes

$$
a^{2} b a b a^{2} b^{2} c^{3} b^{2}
$$

by simulating a particular derivation from S

$$
\begin{aligned}
& S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W \\
& \stackrel{\star}{\Rightarrow} a^{2} Z b W \\
& \stackrel{\star}{\Rightarrow} a^{2} a Z^{\prime} b W \\
& \stackrel{\star}{\Rightarrow} a^{3} A b W \\
& \stackrel{\star}{\Rightarrow} a^{3} a^{2} b^{2} W \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{2} b^{2} W^{\prime} \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{4} B c^{3}
\end{aligned}
$$

Example $\Sigma=\{a, b, c\}$

Our automaton recognizes

$$
a^{2} b a b a^{2} b^{2} c^{3} b^{2}
$$

by simulating a particular derivation from S

$$
\begin{aligned}
& S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W \\
& \stackrel{\star}{\Rightarrow} a^{2} Z b W \\
& \stackrel{\star}{\Rightarrow} a^{2} a Z^{\prime} b W \\
& \stackrel{\star}{\Rightarrow} a^{3} A b W \\
& \stackrel{\star}{\Rightarrow} a^{3} a^{2} b^{2} W \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{2} b^{2} W^{\prime} \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{4} B c^{3} \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{4} b^{2} c^{3}
\end{aligned}
$$

Example $\Sigma=\{a, b, c\}$

Our automaton recognizes

$$
a^{2} b a b a^{2} b^{2} c^{3} b^{2}
$$

by simulating a particular derivation from S

$$
\begin{aligned}
& S \stackrel{\star}{\Rightarrow} a^{2} Z^{\prime} W \\
& \stackrel{\star}{\Rightarrow} a^{2} Z b W \\
& \stackrel{\star}{\Rightarrow} a^{2} a Z^{\prime} b W \\
& \stackrel{\star}{\Rightarrow} a^{3} A b W \\
& \stackrel{\star}{\Rightarrow} a^{3} a^{2} b^{2} W \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{2} b^{2} W^{\prime} \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{4} B c^{3} \\
& \stackrel{\star}{\Rightarrow} a^{5} b^{4} b^{2} c^{3} \\
&=a^{5} b^{6} c^{3} \\
&=\pi a^{2} b a b a^{2} b^{2} c^{3} b^{2}
\end{aligned}
$$

First Contribution: Proof Outline

- This derivation process is simulated by an automaton which tests the matching between generated terminals and input symbols
- At each step the automaton needs to remember at most $\# \Sigma-1$ variables
- The process is nondeterministic
- It can be implemented using $O\left(h^{\# \sum-1}\right)$ states
- Hence, a deterministic control can be implemented with $2^{\text {poly (h) }}$ states
- The "unary parts" can be simulated within the same state bound

First Contribution: Proof Outline

- This derivation process is simulated by an automaton which tests the matching between generated terminals and input symbols
- At each step the automaton needs to remember at most $\# \Sigma-1$ variables
- The process is nondeterministic
- It can be implemented using $O\left(h^{\# \Sigma-1}\right)$ states
- Hence, a deterministic control can be implemented with $2^{\text {poly(h) }}$ states
- The "unary parts" can be simulated within the same state bound

First Contribution: Proof Outline

- This derivation process is simulated by an automaton which tests the matching between generated terminals and input symbols
- At each step the automaton needs to remember at most $\# \Sigma-1$ variables
- The process is nondeterministic
- It can be implemented using $O\left(h^{\# \sum-1}\right)$ states
- Hence, a deterministic control can be implemented with $2^{\text {poly (h) }}$ states
- The "unary parts" can be simulated within the same state bound

First Contribution: Proof Outline

- This derivation process is simulated by an automaton which tests the matching between generated terminals and input symbols
- At each step the automaton needs to remember at most $\# \Sigma-1$ variables
- The process is nondeterministic
- It can be implemented using $O\left(h^{\# \Sigma-1}\right)$ states
- Hence, a deterministic control can be implemented with $2^{\text {poly }(h)}$ states
- The "unary parts" can be simulated within the same state bound

First Contribution: Proof Outline

- This derivation process is simulated by an automaton which tests the matching between generated terminals and input symbols
- At each step the automaton needs to remember at most $\# \Sigma-1$ variables
- The process is nondeterministic
- It can be implemented using $O\left(h^{\# \Sigma-1}\right)$ states
- Hence, a deterministic control can be implemented with $2^{\text {poly }(h)}$ states
- The "unary parts" can be simulated within the same state bound

First Contribution: Proof Outline

- This derivation process is simulated by an automaton which tests the matching between generated terminals and input symbols
- At each step the automaton needs to remember at most $\# \Sigma-1$ variables
- The process is nondeterministic
- It can be implemented using $O\left(h^{\# \Sigma-1}\right)$ states
- Hence, a deterministic control can be implemented with $2^{\text {poly(h) }}$ states
- The "unary parts" can be simulated within the same state bound

Second Contribution: Binary Context-Free Languages

Theorem

Let G grammar in Chomsky normal form with h variables with a binary terminal alphabet.
Then there is a DFA A with at most $2^{h^{O(1)}}$ states s.t. $L(A)=\pi L(G)$
The proof relies the following results:

From sets Z_{i} it is possible to derive "small" DFAs and, by standard constructions, the DFA A s.t. $L(A)={ }_{\pi} L(G)$

Second Contribution: Binary Context-Free Languages

Theorem

Let G grammar in Chomsky normal form with h variables with a binary terminal alphabet.
Then there is a DFA A with at most $2^{h^{O(1)}}$ states s.t. $L(A)=\pi L(G)$
The proof relies the following results:
Lemma ([Kopczyński\&To '10])
For G as in the theorem, it holds that $\psi(L(G))=\bigcup_{i \in I} Z_{i}$ where:

- I is a set of indices with $\# I=O\left(h^{2}\right)$
- $Z_{i}=\bigcup_{\alpha_{0} \in W_{i}}\left\{\alpha_{0}+\alpha_{1, i} n+\alpha_{2, i} m \mid n, m \geq 0\right\}$
- $W_{i} \subseteq \mathbb{N}^{2}$ is finite
- integers in $W_{i}, \alpha_{1, i}, \alpha_{2, i}$ do not exceed $2^{h^{c}}$, where $c>0$

Second Contribution: Binary Context-Free Languages

Theorem

Let G grammar in Chomsky normal form with h variables with a binary terminal alphabet.
Then there is a DFA A with at most $2^{h^{O(1)}}$ states s.t. $L(A)=\pi L(G)$
The proof relies the following results:
Lemma ([Kopczyński\&To '10])
For G as in the theorem, it holds that $\psi(L(G))=\bigcup_{i \in I} Z_{i}$ where:

- I is a set of indices with \#I $=O\left(h^{2}\right)$
- $Z_{i}=\bigcup_{\alpha_{0} \in W_{i}}\left\{\alpha_{0}+\alpha_{1, i} n+\alpha_{2, i} m \mid n, m \geq 0\right\}$
- $W_{i} \subseteq \mathbb{N}^{2}$ is finite
- integers in $W_{i}, \alpha_{1, i}, \alpha_{2, i}$ do not exceed $2^{h^{c}}$, where $c>0$

From sets Z_{i} it is possible to derive "small" DFAs and, by standard constructions, the DFA A s.t. $L(A)={ }_{\pi} L(G)$

Optimality

- For each CFG in Chomsky normal form with h variables we provided a Parikh equivalent DFA with $2^{h^{O(1)}}$ states in the following cases:
- bounded languages
- binary languages
- This upper bound cannot be reduced (consequence of the unary case)

Optimality

- For each CFG in Chomsky normal form with h variables we provided a Parikh equivalent DFA with $2^{h^{O(1)}}$ states in the following cases:
- bounded languages
- binary languages
- This upper bound cannot be reduced (consequence of the unary case)

Open Questions

Is it possible to extend these results to all context-free languages?

Open Questions

Is it possible to extend these results to all context-free languages?

- Bounded case crucial argument: it is enough to remember $\# \Sigma-1$ variables
- Binary case the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:

Open Questions

Is it possible to extend these results to all context-free languages?

- Bounded case crucial argument: it is enough to remember $\# \Sigma-1$ variables
- Binary case the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:

Open Questions

Is it possible to extend these results to all context-free languages?

- Bounded case crucial argument: it is enough to remember $\# \Sigma-1$ variables
- Binary case the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:

- What about word bounded CFLs?
i.e., subsets of $w_{1}^{*} w_{2}^{*} \ldots w_{m}^{*}$, where each w_{i} is a string
- In our construction the cost is double exponential in the size of the alphabet: state whether or not this is optimal

Open Questions

Is it possible to extend these results to all context-free languages?

- Bounded case crucial argument: it is enough to remember $\# \Sigma-1$ variables
- Binary case the main lemma does not hold for alphabets with ≥ 3 letters

Other questions:

- What about word bounded CFLs?
i.e., subsets of $w_{1}^{*} w_{2}^{*} \ldots w_{m}^{*}$, where each w_{i} is a string
- In our construction the cost is double exponential in the size of the alphabet: state whether or not this is optimal

