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Finite State Automata
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Base versions:
I one-way deterministic (1DFA)
I one-way nondeterministic (1NFA)

Possibile variants:
I two-way automata: input head moving forth and back

2DFA
2NFA

I alternating automata
I ...



1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct



Costs of the Optimal Simulations Between Automata
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[Rabin&Scott ’59, Shepardson ’59, Meyer&Fischer ’71, . . . ]

Question

How much the possibility of moving the input head
forth and back is useful to eliminate the nondeterminism?



Costs of the Optimal Simulations Between Automata
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Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial



Sakoda&Sipser Question: Upper and Lower Bounds

I Exponential upper bounds
deriving from the simulations by 1DFAs

I Polynomial lower bounds
for the cost c(n) of simulation of 1NFAs by 2DFAs:

c(n) ∈ Ω( n2

log n ) [Berman&Lingas ’77]
c(n) ∈ Ω(n2) [Chrobak ’86]



Sakoda and Sipser Question

I Very difficult in its general form
I Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial vs exponential)

I Hence:
Try to attack restricted versions of the problem!



Two-Way Automata: Few Technical Details
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I Input surrounded by the endmarkers ` and a
I w ∈ Σ∗ is accepted iff there is a computation

with input tape ` w a
starting at the left endmarker ` in the initial state
reaching a final state (on the left endmarker)



2NFAs vs 2DFAs: Restricted Versions

Previous works:

(i) Restrictions on the simulating machines (i.e., resulting 2DFAs)
I sweeping automata [Sipser ’80]
I oblivious automata [Hromkovič&Schnitger ’03]
I “few reversal” automata [Kapoutsis ’11]

(ii) Restrictions on the languages
I unary regular languages [GeffertMereghetti&Pighizzini ’03]

In this work we use a different approach:

(iii) Restrictions on the simulated machines (i.e., given 2NFAs)



Outer Nondeterministic Automata (ONFAs)
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In the paper, we consider the following model:

Definition
A two-way automaton is said to be outer nondeterministic iff
nondeterministic choices are allowed only when the input head is
scanning the endmarkers



Unary 2NFAs vs ONFAs

Normal Form for Unary 2NFAs [GeffertMereghetti&Pighizzini ’03]

I Nondeterministic choices only at the endmarkers
I Head reversals only at the endmarkers
I In each sweep the input length modulo one integer is counted

Outer Nondeterministic Automata

I No restrictions on the input alphabet
I No restrictions on head reversals
I Deterministic transitions on “real” input symbols
I Nondeterministic choices only at the endmarkers

Unary 2NFAs are a very restricted version of 2ONFAs!

I We extended to 2ONFAs previous results on unary 2NFAs



Outer nondeterministic automata (ONFAs): tools

Main tool: procedure reach(p, q)
I Checks the existence of a computation segment

- from the left endmarker in the state p
- to the left endmarker in the state q
- not visiting the left endmarker in between

Accepting computation:
sequence of states q0, q1, ..., qf visited at the left endmarker:

I q0 initial state
I for i = 1, ..., f reach(qi−1, qi ) = true
I qf final state



Outer nondeterministic automata (ONFAs): tools

I How to deal with loops?
I Two kinds of loops:

- loops visiting the endmarkers
- loops inside the “real” input



Loops visiting the endmarkers

I Loops involving endmarkers can contain nondeterministic
choices

I If a computation visits the left endmarker twice in the same
state q then there is a shorter “equivalent” computation

I We can consider only computations visiting the left
endmarker ≤ #Q times



Loops inside the “real” input

Procedure reach(p, q):
I “Backward search” from q to p
I In this way loops are avoided
I Finite control with a linear number of states

The technique:
I Introduced by Sipser for the complementation

of space bounded Turing machines [Sipser ’80]
I Modified for the complementation of 2DFAs

[GeffertMereghetti&Pighizzini ’07]
I Extended in our paper to 2ONFAs



Results

(i) Subexponential simulation of 2ONFAs by 2DFAs
Verify that qf is reachable from q0
by visiting the left endmarker ≤ #Q times
(divide-and-conquere algorithm)

(ii) Polynomial complementation of 2ONFAs
Inductive counting argument

(iii) Polynomial simulation of 2ONFAs by 2DFAs
under the condition L = NL
Reduction to graph accessibility problem

(iv) Polynomial simulation of 2ONFAs by unambiguous 2ONFAs
Reduction to graph accessibility problem
combined with NL/poly ⊆ UL [Reinhardt&Allender ’00]



Results: Alternating Case (2ONFAs)

At the endmarkers, universal and existential states are allowed

(v) Polynomial simulation of 2OAFAs by 2DFAs under L = P

(vi) Polynomial simulation of 2OAFAs by 2NFAs under NL = P

For both:
Reduction to the Alternating Graph Accessibility Problem



Final Remarks

I We extended several results from the unary
to the general case for 2ONFAs

I In the unary case, restricting the nondeterminism to the
endmarkers does not significantly change the size of 2NFAs
(normal form)

I In the general case, is there some “simple way”
to restrict the nondeterminism?

I Does it is possible to extend our results
to some wider class of 2NFAs?

I Interesting connections with complexity theory:
Results connected with classical complexity questions
Proof techniques derived from space complexity
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