Two-Way Automata Making Choices Only at the Endmarkers

Viliam Geffert ${ }^{1}$ Bruno Guillon ${ }^{2}$ Giovanni Pighizzini ${ }^{3}$

${ }^{1}$ Department of Computer Science P. J. Šafárik University, Košice Slovakia

2 Université Nice-Sophia Antipolis and École Normale Supérieure de Lyon France

3 Dipartimento di Informatica e Comunicazione Università degli Studi di Milano Italy

LATA 2012 - A Coruña, Spain - March 7, 2012

Finite State Automata

Base versions:

- one-way deterministic (1DFA)
- one-way nondeterministic (1NFA)

Possibile variants:

- two-way automata: input head moving forth and back
- 2DFA
- 2NFA
- alternating automata

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?
They share the same computational power, namely they characterize the class of regular languages, however...
...some of them are more succinct

Costs of the Optimal Simulations Between Automata

1DFA
[Rabin\&Scott '59, Shepardson '59, Meyer\&Fischer '71, ...]

Question

How much the possibility of moving the input head forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

Problem ([Sakoda\&Sipser '78])
Do there exist polynomial simulations of

- 1NFAs by 2DFAs
- 2NFAs by 2DFAs ?

Conjecture

These simulations are not polynomial

Sakoda\&Sipser Question: Upper and Lower Bounds

- Exponential upper bounds deriving from the simulations by 1DFAs
- Polynomial lower bounds for the cost $c(n)$ of simulation of 1NFAs by 2DFAs:
- $c(n) \in \Omega\left(\frac{n^{2}}{\log n}\right)$ [Berman\&Lingas '77]
- $c(n) \in \Omega\left(n^{2}\right)$ [Chrobak '86]

Sakoda and Sipser Question

- Very difficult in its general form
- Not very encouraging obtained results:

Lower and upper bounds too far (Polynomial vs exponential)

- Hence:

Try to attack restricted versions of the problem!

Two-Way Automata: Few Technical Details

- Input surrounded by the endmarkers \vdash and \dashv
- $w \in \Sigma^{*}$ is accepted iff there is a computation
- with input tape $\vdash w \dashv$
- starting at the left endmarker \vdash in the initial state
- reaching a final state (on the left endmarker)

2NFAs vs 2DFAs: Restricted Versions

Previous works:
(i) Restrictions on the simulating machines(i.e., resulting 2DFAs)

- sweeping automata
- oblivious automata
- "few reversal" automata
(ii) Restrictions on the languages
- unary regular languages [Geffert Mereghetti\&Pighizzini '03]

In this work we use a different approach:
(iii) Restrictions on the simulated machines (i.e., given 2NFAs)

Outer Nondeterministic Automata (ONFAs)

In the paper, we consider the following model:

Definition

A two-way automaton is said to be outer nondeterministic iff nondeterministic choices are allowed only when the input head is scanning the endmarkers

Unary 2NFAs vs ONFAs

Normal Form for Unary 2NFAs [Geffert Mereghetti\&Pighizzini '03]

- Nondeterministic choices only at the endmarkers
- Head reversals only at the endmarkers
- In each sweep the input length modulo one integer is counted

Outer Nondeterministic Automata

- No restrictions on the input alphabet
- No restrictions on head reversals
- Deterministic transitions on "real" input symbols
- Nondeterministic choices only at the endmarkers

Unary 2NFAs are a very restricted version of 2ONFAs!

- We extended to 2ONFAs previous results on unary 2NFAs

Outer nondeterministic automata (ONFAs): tools

Main tool: procedure reach (p, q)

- Checks the existence of a computation segment
- from the left endmarker in the state p
- to the left endmarker in the state q
- not visiting the left endmarker in between

Accepting computation:
sequence of states $q_{0}, q_{1}, \ldots, q_{f}$ visited at the left endmarker:

- q_{0} initial state
- for $i=1, \ldots, f$ reach $\left(q_{i-1}, q_{i}\right)=$ true
- q_{f} final state

Outer nondeterministic automata (ONFAs): tools

- How to deal with loops?
- Two kinds of loops:
- loops visiting the endmarkers
- loops inside the "real" input

Loops visiting the endmarkers

- Loops involving endmarkers can contain nondeterministic choices
- If a computation visits the left endmarker twice in the same state q then there is a shorter "equivalent" computation
- We can consider only computations visiting the left endmarker $\leq \# Q$ times

Loops inside the "real" input

Procedure reach (p, q) :

- "Backward search" from q to p
- In this way loops are avoided
- Finite control with a linear number of states

The technique:

- Introduced by Sipser for the complementation of space bounded Turing machines
- Modified for the complementation of 2DFAs [Geffert Mereghetti\&Pighizzini '07]
- Extended in our paper to 2ONFAs

Results

(i) Subexponential simulation of 2ONFAs by 2DFAs

Verify that q_{f} is reachable from q_{0}
by visiting the left endmarker $\leq \# Q$ times (divide-and-conquere algorithm)
(ii) Polynomial complementation of 2ONFAs Inductive counting argument
(iii) Polynomial simulation of 2ONFAs by 2DFAs under the condition $\mathrm{L}=\mathrm{NL}$
Reduction to graph accessibility problem
(iv) Polynomial simulation of 2ONFAs by unambiguous 2ONFAs Reduction to graph accessibility problem

Results: Alternating Case (2ONFAs)

At the endmarkers, universal and existential states are allowed
(v) Polynomial simulation of 2OAFAs by 2DFAs under $L=P$
(vi) Polynomial simulation of 2OAFAs by 2NFAs under NL $=P$

For both:
Reduction to the Alternating Graph Accessibility Problem

Final Remarks

- We extended several results from the unary to the general case for 2ONFAs
- In the unary case, restricting the nondeterminism to the endmarkers does not significantly change the size of 2NFAs (normal form)
- In the general case, is there some "simple way" to restrict the nondeterminism?
- Does it is possible to extend our results to some wider class of 2NFAs?
- Interesting connections with complexity theory:
- Results connected with classical complexity questions
- Proof techniques derived from space complexity

