Two-Way Automata Characterizations of $\mathrm{L} /$ poly versus NL

Christos A. Kapoutsis ${ }^{1}$ Giovanni Pighizzini ${ }^{2}$
${ }^{1}$ LIAFA, Université Paris VII, France
${ }^{2}$ DI, Università degli Studi di Milano, Italia
CRS 2012 - Nizhny Novgorod, Russia July 3-7, 2012

Nondeterminism with Bounded Resources

- Time complexity

$$
P \stackrel{?}{=} N P
$$

- Space complexity
PSPACE = NPSPACE

$$
\mathrm{L} \stackrel{?}{=} \mathrm{NL}
$$

polynomial space
logarithmic space

- State complexity

$1 \mathrm{D} \subsetneq 1 \mathrm{~N}$	one-way automata
$2 \mathrm{D} \stackrel{?}{=} 2 \mathrm{~N}$	two-way automata

Two-Way Automata

- The input head can be moved in both directions
- They recognize only regular language
- They can be smaller than one-way automata

Technical detail:

- Input surrounded by the endmarkers \vdash and \dashv

An Example

$$
L_{h}=(a+b)^{*} a(a+b)^{h-1}
$$

- 1NFA: $h+1$ states
- 1DFA: 2^{h} states
- 2DFA: $h+2$ states

Classes

- Family of problems/languages $\mathcal{L}=\left(L_{h}\right)_{h \geq 1}$
- 2D class of families of problems solvable by poly-size 2DFAs:
$\mathcal{L} \in 2 \mathrm{D}$ iff \exists polynomial p s.t. each L_{h} is solved by a 2DFA of size $p(h)$
- 1D, 1N, 2N ...

Example

$L_{h}=(a+b)^{*} a(a+b)^{h-1}$

- 1NFA: $h+1$ states
- 1DFA: 2^{h} states
- 2DFA: $h+2$ states

$$
\begin{aligned}
\mathcal{L} & =\left(L_{h}\right)_{h \geq 1}: \\
& \Rightarrow \mathcal{L} \in 1 \mathrm{~N} \\
& \Rightarrow \mathcal{L} \notin 1 \mathrm{D} \\
& \Rightarrow \mathcal{L} \in 2 \mathrm{D} \subseteq 2 \mathrm{~N}
\end{aligned}
$$

The Question of Sakoda and Sipser

Problem ([Sakoda\&Sipser'78])
Do there exist polynomial simulations of

- 1NFAs by 2DFAs
- 2NFAs by 2DFAs ?

Conjecture

Both simulations are not polynomial! i.e., $1 \mathrm{~N} \neq 2 \mathrm{D}$ and $2 \mathrm{~N} \neq 2 \mathrm{D}$

Two-Way Automata versus Logarithmic Space

$$
\begin{aligned}
& \text { Theorem ([Berman\&Lingas '77]) } \\
& \text { If } \mathrm{L}=\mathrm{NL} \text { then } \\
& \text { for every } s \text {-state } \sigma \text {-symbol 2NFA } \\
& \text { there is a poly }(s \sigma) \text {-state 2DFA } \\
& \text { which agrees with it on all inputs of length } \leq s
\end{aligned}
$$

Theorem ([Geffert\&P'11])

If $\mathrm{L}=\mathrm{NL}$ then
for every s-state unary 2NFA there is an equivalent poly(s)-state 2DFA

Theorem ([Kapoutsis '11])
L/poly \supseteq NL iff for every s-state σ-symbol 2NFA there is a poly(s)-state 2DFA which agrees with it on all inputs of length $\leq s$

Two-Way Automata versus Logarithmic Space

L/poly: Nonuniform Deterministic Logspace

- L/poly
class of languages accepted by deterministic logspace machines with a polynomial advice

> Problem
> L/poly \supseteq NL ?

Two-Way Automata versus Logarithmic Space

$2 \mathrm{~N} /$ unary := only unary inputs
Theorem ([Geffert\& ' '11])
$\mathrm{L}=\mathrm{NL} \Rightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ unary \downarrow

- What about the weaker hypothesis L/poly \supseteq NL?
- What about the converse of this statement?
$2 \mathrm{~N} /$ poly := only short inputs
Theorem ([Kapoutsis '11])
$\mathrm{L} /$ poly $\supseteq \mathrm{NL} \Leftrightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ poly

In this work:

$\mathrm{L} /$ poly $\supseteq \mathrm{NL} \Leftrightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ unary

Two-Way Automata versus Logarithmic Space

$2 \mathrm{~N} /$ unary := only unary inputs
Theorem ([Geffert\&P '11])
$\mathrm{L}=\mathrm{NL} \Rightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ unary

In this work:

$\mathrm{L} /$ poly $\supseteq \mathrm{NL} \Leftrightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ unary
$2 \mathrm{~N} /$ poly := only short inputs
Theorem ([Kapoutsis '11])
$\mathrm{L} /$ poly $\supseteq \mathrm{NL} \Leftrightarrow 2 \mathrm{D} \supseteq 2 \mathrm{~N} /$ poly

Furthermore:

- Investigation of the common behavior unary/short
- Characterizations of L/poly vs NL

1st Tool: Outer Nondeterministic Automata (2OFA)

Nondeterministic choices are possible only when the head is scanning the endmarkers

Lemma ([Geffert et al. '03])
For every s-state unary 2NFA there is an equivalent poly(s)-state 2OFA

Lemma

For every s-state 2NFA and integer I there is a poly(sl)-state 2OFA which agrees with it on all inputs of length ≤ 1

2nd Tool: The Graph Accessibility Problem

GAP:

- Given $G=(V, E)$ an oriented graph, $s, t \in V$
- Decide whether or not G contains a path from s to t

Theorem ([Jones '75])
GAP is complete for NL

$$
\Rightarrow \quad G A P \in L \text { iff } L=N L
$$

(under logspace reductions)
GAP $_{h}$:

- GAP restricted to graphs with vertex set $V_{h}=\{0, \ldots, h-1\}$

We show that under suitable encodings the family $\left(\mathrm{GAP}_{h}\right)$ is complete for $2 \mathrm{~N} /$ unary and $2 \mathrm{~N} /$ poly

$$
\begin{aligned}
& \left(\mathrm{GAP}_{h}\right) \in 2 \mathrm{D} \text { iff } \\
& 2 \mathrm{D} \supseteq 2 \mathrm{~N} / \text { unary } \quad \text { iff } \\
& 2 \mathrm{D} \supseteq 2 \mathrm{~N} / \text { poly } \quad \text { iff } \\
& \mathrm{L} / \text { poly } \supseteq \mathrm{NL}
\end{aligned}
$$

Binary Encoding: The Family BGAP

- $G=\left(V_{h}, E\right)$, with $V_{h}=\{0, \ldots, h-1\}$
- Binary encoding of G :
$\langle G\rangle_{2} \in\{0,1\}^{h^{2}}$ standard encoding of the adjacency matrix
- BGAP $_{h}:=\left\{\langle G\rangle_{2} \mid G\right.$ has a path from 0 to $\left.h-1\right\}$
- 2NFA recognizing BGAP $_{h}$:
- input: $x \in\{0,1\}^{h^{2}} \quad$ output: $x \in$ BGAP $_{h}$?
- Nondeterministic choices only on the left endmarker
- $O\left(h^{3}\right)$ states

Lemma
BGAP $\in 20$

Reductions

Two-Way Deterministic Transducer (2DFT)

- $\mathcal{L}=\left(L_{h}\right)_{h \geq 1}, \mathcal{L}^{\prime}=\left(L_{h}^{\prime}\right)_{h \geq 1}$
- "Small" reduction:
$\mathcal{L} \leq_{s m} \mathcal{L}^{\prime}$ iff each L_{h} reduces to L_{h}^{\prime} via "small" 2DFTs with "short" outputs

BGAP and Characterizations

Theorem
BGAP is
2N/poly-complete
2O-complete under $\leq_{s m}$

Lemma

2D is closed under $\leq_{s m}$
Standard machine composition

BGAP and Characterizations

```
Theorem
BGAP is
    2N/poly-complete
    2O-complete
under }\mp@subsup{\leq}{sm}{
```


Lemma

2 D is closed under $\leq_{s m}$

Hence the following statements are equivalent:

Unary Encoding: The Family UGAP

- $K_{h}:=$ complete directed graph with vertex set $V_{h}=\{0, \ldots, h-1\}$
- With each edge (i, j) we associate a different prime number $p_{(i, j)}$
 encoded by the string $a^{m_{G}}$, where

- Graph $K_{h}(m): \exists$ edge (i, j) iff $p_{(i, j)}$ divides m
- UGAP $:=\left\{a^{m} \mid K_{h}(m)\right.$ has a path from 0 to $\left.h-1\right\}$

Unary Encoding: The Family UGAP

- $K_{h}:=$ complete directed graph with vertex set $V_{h}=\{0, \ldots, h-1\}$
- With each edge (i, j) we associate a different prime number $p_{(i, j)}$
- A subgraph $G=\left(V_{h}, E\right)$ of K_{h} is
 encoded by the string $a^{m_{G}}$, where

$$
m_{G}=\prod_{(i, j) \in E} p_{(i, j)}
$$

$$
\begin{aligned}
m_{G} & =3 \cdot 11 \cdot 17 \cdot 37 \cdot 43 \\
& =892551
\end{aligned}
$$

- Graph $K_{h}(m): \exists$ edge (i, j) iff $p_{(i, j)}$ divides m
- $\mathrm{UGAP}_{h}:=\left\{a^{m} \mid K_{h}(m)\right.$ has a path from 0 to $\left.h-1\right\}$

> Lemma
> UGAP $\in 20$

Prime Reductions

- Producing a unary output a^{m} could require too many states!
- Output: a list $z_{1} \cdots z_{k}$ of prime powers factorizing m
- "Small" prime reduction $\preceq_{s m}$

Machine composition

- Unary 2DFAs can be modified to read prime encodings
- This allows to prove that 2 D is closed under $\preceq_{s m}$

UGAP and Characterizations

Lemma
2D is closed under $\preceq_{s m}$

Theorem

$$
\begin{aligned}
& \text { UGAP is } \\
& \text { 2N/unary-complete } \\
& \text { 2O-complete } \\
& \text { under } \preceq_{\text {sm }}
\end{aligned}
$$

Hence the following statements are equivalent:

(a)
$\mathrm{L} /$ poly $\supseteq \mathrm{NL}$
(a) [Kapoutsis '11]

Directions for Further Investigations

- Characterizations in terms of two-way automata of uniform L vs NL
- Comparison of two-way automata on unary vs short inputs
- Use of the reductions introduced in the paper for other purposes

Thank you for your attention!

