Two-Way Automata Characterizations of L/poly versus NL

Christos A. Kapoutsis¹ Giovanni Pighizzini²

¹LIAFA, Université Paris VII, France

²DI, Università degli Studi di Milano, Italia

CRS 2012 – Nizhny Novgorod, Russia July 3–7, 2012 Nondeterminism with Bounded Resources

Two-Way Automata

- The input head can be moved in both directions
- They recognize only regular language
- They can be smaller than one-way automata

Technical detail:

▶ Input surrounded by the *endmarkers* \vdash and \dashv

An Example

 $L_h = (a+b)^* a(a+b)^{h-1}$

- ► 1NFA: *h* + 1 states
- ▶ 1DFA: 2^h states
- 2DFA: h+2 states

Classes

- Family of problems/languages $\mathcal{L} = (L_h)_{h \ge 1}$

each L_h is solved by a 2DFA of size p(h)

▶ 1D, 1N, 2N ...

Example

$$L_h = (a + b)^* a(a + b)^{h-2}$$

- ► 1NFA: h+1 states
- ▶ 1DFA: 2^h states
- ▶ 2DFA: h + 2 states

 $\mathcal{L} = (\mathcal{L}_h)_{h \ge 1}:$ $\Rightarrow \mathcal{L} \in 1\mathbb{N}$ $\Rightarrow \mathcal{L} \notin 1\mathbb{D}$

$$\Rightarrow \ \mathcal{L} \in 2\mathsf{D} \subseteq 2\mathsf{N}$$

The Question of Sakoda and Sipser

Problem ([Sakoda&Sipser '78]) Do there exist polynomial simulations of

- ▶ 1NFAs by 2DFAs
- ► 2NFAs by 2DFAs ?

Conjecture

Both simulations are not polynomial! i.e., $1N \neq 2D$ and $2N \neq 2D$

Theorem ([Berman&Lingas '77]) If L = NL then for every s-state σ -symbol 2NFA there is a poly($s\sigma$)-state 2DFA which agrees with it on all inputs of length $\leq s$

Theorem ([Geffert&P'11])

If L = NL then for every s-state unary 2NFA there is an equivalent poly(s)-state 2DFA Theorem ([Kapoutsis '11]) L/poly \supseteq NL *iff* for every s-state σ -symbol 2NFA there is a poly(s)-state 2DFA which agrees with it on all inputs of length \leq s

L/poly: Nonuniform Deterministic Logspace

L/poly

class of languages accepted by deterministic logspace machines with a $polynomial \ advice$

Problem $L/poly \supseteq NL ?$

2N/unary := only unary inputs

Theorem ([Geffert&P '11]) L = NL \Rightarrow 2D \supseteq 2N/unary

► What about the weaker hypothesis L/poly ⊇ NL?

What about the converse of this statement?

In this work: L/poly \supset NL \Leftrightarrow 2D \supset 2N/unary 2N/poly := only *short* inputs

Theorem ([Kapoutsis '11]) L/poly \supseteq NL \Leftrightarrow 2D \supseteq 2N/poly

2N/unary := only unary inputs

Theorem ([Geffert&P '11]) L = NL \Rightarrow 2D \supseteq 2N/unary 2N/poly := only *short* inputs

Theorem ([Kapoutsis '11]) $L/poly \supseteq NL \Leftrightarrow 2D \supseteq 2N/poly$

Furthermore:

- Investigation of the common behavior unary/short
- Characterizations of L/poly vs NL

In this work:

 $\mathsf{L/poly}\supseteq\mathsf{NL}\Leftrightarrow \mathsf{2D}\supseteq\mathsf{2N/unary}$

1st Tool: Outer Nondeterministic Automata (20FA)

Nondeterministic choices are possible only when the head is scanning the endmarkers

Lemma ([Geffert et al. '03]) For every s-state unary 2NFA there is an equivalent poly(s)-state 2OFA

Lemma

For every s-state 2NFA and integer lthere is a poly(sl)-state 2OFA which agrees with it on all inputs of length $\leq l$

2nd Tool: The Graph Accessibility Problem

GAP:

- Given G = (V, E) an oriented graph, $s, t \in V$
- Decide whether or not G contains a path from s to t

Theorem ([Jones '75]) GAP *is complete for* NL (*under logspace reductions*)

$$\Rightarrow \quad \mathsf{GAP} \in \mathsf{L} \text{ iff } \mathsf{L} = \mathsf{NL}$$

GAP_h:

• GAP restricted to graphs with vertex set $V_h = \{0, \dots, h-1\}$

We show that under suitable encodings the family (GAP_h) is complete for 2N/unary and 2N/poly $\Rightarrow \begin{array}{l} (\mathsf{GAP}_h) \in \mathsf{2D} \text{ iff} \\ \mathsf{2D} \supseteq \mathsf{2N}/\mathsf{unary} \text{ iff} \\ \mathsf{2D} \supseteq \mathsf{2N}/\mathsf{poly} \text{ iff} \\ \mathsf{L}/\mathsf{poly} \supseteq \mathsf{NL} \end{array}$

Binary Encoding: The Family BGAP

•
$$G = (V_h, E)$$
, with $V_h = \{0, ..., h-1\}$

- Binary encoding of G: $\langle G \rangle_2 \in \{0,1\}^{h^2}$ standard encoding of the adjacency matrix
- BGAP_h := { $\langle G \rangle_2 \mid G$ has a path from 0 to h 1}

2NFA recognizing BGAP_h:

- input: $x \in \{0,1\}^{h^2}$ output: $x \in \mathsf{BGAP}_h$?
- Nondeterministic choices only on the left endmarker
- O(h³) states

Lemma

 $\mathsf{BGAP}\in\mathsf{2O}$

Reductions

Two-Way Deterministic Transducer (2DFT)

•
$$\mathcal{L} = (L_h)_{h\geq 1}, \ \mathcal{L}' = (L'_h)_{h\geq 1}$$

• "Small" reduction: $\mathcal{L} \leq_{sm} \mathcal{L}'$ iff each L_h reduces to L'_h via "small" 2DFTs with "short" outputs

BGAP and Characterizations

Theorem

BGAP is 2N/poly-complete 2O-complete under ≤_{sm}

Lemma

2D is closed under \leq_{sm}

BGAP and Characterizations

Theorem

BGAP is 2N/poly-complete 2O-complete $under \leq_{sm}$

Lemma

2D is closed under \leq_{sm}

Hence the following statements are equivalent:

Unary Encoding: The Family UGAP

- ► K_h := complete directed graph with vertex set V_h = {0,..., h − 1}
- With each edge (i, j) we associate a different prime number p_(i,j)
- ► A subgraph G = (V_h, E) of K_h is encoded by the string a^{m_G}, where

$$m_G = \prod_{(i,j)\in E} p_{(i,j)}$$

- ► Graph $K_h(m)$: \exists edge (i,j) iff $p_{(i,j)}$ divides m
- UGAP_h := { $a^m \mid K_h(m)$ has a path from 0 to h-1}

Unary Encoding: The Family UGAP

- ► K_h := complete directed graph with vertex set V_h = {0,..., h − 1}
- With each edge (i, j) we associate a different prime number p_(i,j)
- ► A subgraph G = (V_h, E) of K_h is encoded by the string a^{m_G}, where

$$m_G = \prod_{(i,j)\in E} p_{(i,j)}$$

- $m_G = 3 \cdot 11 \cdot 17 \cdot 37 \cdot 43$ = 892551
- ► Graph $K_h(m)$: \exists edge (i,j) iff $p_{(i,j)}$ divides m

• UGAP_h := { $a^m | K_h(m)$ has a path from 0 to h-1}

Lemma $UGAP \in 20$

Prime Reductions

- Producing a unary output a^m could require too many states!
- Output: a list z₁ · · · z_k of prime powers factorizing m
- ► "Small" prime reduction <u>≺</u>sm

Machine composition

- Unary 2DFAs can be modified to read prime encodings
- This allows to prove that 2D is closed under \leq_{sm}

UGAP and Characterizations

Lemma

2D is closed under \leq_{sm}

Theorem

UGAP *is* 2N/unary-*complete* 2O-*complete under ≺*_{sm}

Hence the following statements are equivalent:

- Characterizations in terms of two-way automata of *uniform* L vs NL
- Comparison of two-way automata on unary vs short inputs
- Use of the reductions introduced in the paper for other purposes

Thank you for your attention!