
Two-Way Finite Automata
Old and Recent Results

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano

Automata and JAC 2012
La Marana, Corsica, France
September 19-21, 2012

Finite State Automata

i n p u t. . .

6 -

One-way version

At each step the input head is moved
one position to the right

I 1DFA: deterministic transitions
I 1NFA: nondeterministic transitions

A Very Preliminary Example

Σ = {a, b}, fixed n > 0:

Hn = (a + b)n−1a(a + b)∗

Check the nth symbol from the left!

Ex. n = 4

i n p u t. . .

a b b a b a

1234

qY

66 6 6 6 6

6

YES!

1DFA: n + 2 states

A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

How to locate it?

Use nondeterminism!

Guess Reading the symbol a the automaton can guess
that it is the nth symbol from the right

Verify In the next steps the automaton verifies such a guess

A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

Ex. n = 4

i n p u t. . .

b a a a b a

q0q0q0

guess

verify

4th symbol from the right

3210

66

6

6 6 6 6

YES!

1NFA: n + 1 states

A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

����q0 ����q1 ����q2 ����q3 ����qn���@@R
-a -a, b -a, b -a, b

�
�
�
-

a, b

Very nice!
...but I need a deterministic automaton...

Remember the previous n input symbols!

A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

Ex. n = 4

i n p u t. . .

b a a a b a

bb ab a ab a a aa a a b

a a b a

66 6 6 6 6

6

YES!

1DFA: 2n states

...but I need a smaller deterministic automaton...
This is the smallest one!

However...

A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

...if the head can be moved back...

Ex. n = 4

b a a a b a a

right
endmarker

q0123

4 decision
if input symbol = a then accept

else reject

66

6

6 6 6 6

YES!

Two-way deterministic automaton (2DFA): n+... states

A Preliminary Example

Σ = {a, b}, fixed n > 0:

In = (a + b)∗a(a + b)n−1

Check the nth symbol from the right!

Summing up, In is accepted by
I a 1NFA and a 2DFA with approximatively

the same number of states n+...

I each 1DFA is exponentially larger (≥ 2n states)

In this example,
nondeterminism can be removed using two-way motion
keeping approximatively the same number of states

Two-Way Automata: Technical Details

` i n p u t. . . a
6� -

I Input surrounded by the endmarkers ` and a
I Moves

to the left
to the right
stationary

I Initial configuration
I Accepting configuration
I Infinite computations are possible
I Deterministic (2DFA) and nondeterministic (2NFA) versions

1DFA, 1NFA, 2DFA, 2NFA

What about the power of these models?

They share the same computational power, namely they
characterize the class of regular languages, however...

...some of them are more succinct

Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

����q0 ����q1 ����q2 ����q3 ����qn ����qf���@@R
-a -a, b -a, b -a, b -a��- a, b ��- a, b

1NFA: n + 2 states

Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

@@R����bbb ����bba ����baa ����aaa-a -a -a

?

� �

��

b

?
b

�
�

��	

a
��-

b

����bab ������� ����aab

?

a
?
b

� a

�
�
���a

@
@

@@I a

���-
a, b

�

� 6�
b

����aba ����abb

6
b

b�

6

n = 3

Minimum 1DFA: 2n + 1 states

Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

2DFA ?

Even scanning from the right it seems that
we need to remember a “window” of n symbols

We use a different technique!

Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

` b b a b a a b a a a a n = 4

while input symbol 6= a do move to the right
move n squares to the right
if input symbol = a then accept

else move n − 1 cells to the left
repeat from the first step

Exception: if input symbol =a then reject

2DFA: 2n+... states

Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

A different algorithm

` b b a a a a b a b b a b b a n = 4

Check positions k s.t. k ≡ 1 (modn)
Check positions k s.t. k ≡ 2 (modn)
. . .
Check positions k s.t. k ≡ n (modn)

Even this strategy can be implemented using O(n) states!

Sweeping automata:
I Deterministic transitions
I Head reversals only at the endmarkers

Main Example: Ln = (a + b)∗a(a + b)n−1a(a + b)∗

Summing up,
I Ln is accepted by

a 1NFA
a 2DFA
a sweeping automaton

with O(n) states
I Each 1DFA is exponentially larger

Also for this example,
nondeterminism can be removed using two-way motion
keeping a linear number of states

Is it always possible
to replace nondeterminism by two-way motion

without increasing too much the size?

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

[Rabin&Scott ’59, Shepardson ’59, Meyer&Fischer ’71, . . .]

Question

How much the possibility of moving the input head
forth and back is useful to eliminate the nondeterminism?

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Conjecture

These simulations
are not polynomial

Costs of the Optimal Simulations Between Automata

1DFA

1NFA 2DFA 2NFA

@
@
@
@
@
@
@R ?

�
�

�
�

�
�
�	

2n O(2n log n) O(2n2
)

-? � ?

I Exponential upper bounds
deriving from the simulations of 1NFAs and 2NFAs by 1DFAs

I Polynomial lower bound
Ω(n2) for the cost of the simulation of 1NFAs by 2DFAs

[Chrobak ’86]

Sakoda and Sipser Question

I Very difficult in its general form
I Not very encouraging obtained results:

Lower and upper bounds too far
(Polynomial vs exponential)

I Hence:
Try to attack restricted versions of the problem!

NFAs vs 2DFAs: Restricted Versions

(i) Restrictions on the resulting machines (2DFAs)
I sweeping automata [Sipser ’80]
I oblivious automata [Hromkovič&Schnitger ’03]
I “few reversal” automata [Kapoutsis ’11]

(ii) Restrictions on the languages
I unary regular languages [GeffertMereghetti&P ’03]

(iii) Restrictions on the starting machines (2NFAs)
I outer nondeterministic automata [GuillonGeffert&P ’12]

Ln = (a + b)∗a(a + b)n−1a(a + b)∗ Again!

Naïf algorithm: compare input positions i and i + n, i = 1, 2, . . .

` b b

((((
((

a

((((
((

b

((((
((

a

((((
((

a

((((
((

b

((((
((

a a a a n = 4

Even in this case O(n) states!

Oblivious Automata:
I Deterministic transitions
I Same “trajectory” on all inputs of the same length

Ln = (a + b)∗a(a + b)n−1a(a + b)∗ Again!

Naïf algorithm: compare input positions i and i + n, i = 1, 2, . . .

` b b

((((
((

a

((((
((

b

((((
((

a

((((
((

a

((((
((

b

((((
((

a a a a n = 4

Number of head reversals:
On input of length m:

I This technique uses about 2m reversals,
a linear number in the input length

I The “sweeping” algorithm uses about 2n reversals,
a constant number in the input length

Another Restricted Model

“Few Reversal” Automata [Kapoutsis ’11]:

I On input of length m the number of reversals is o(m),
i.e., sublinear

I We consider only the deterministic case

Theorem ([Kapoutsis&P ’12])
Each 2DFA using o(m) reversals actually uses O(1) reversals

Restricted Models: Separations

1NFA

oblivious sweeping few reversals

2DFA
@

@
@

@
@
@I 6

�
�
�
�
�
��

�
�
�
�
�
���

�
�

�
�
�	 ?

6 @
@
@
@
@
@R@

@
@

@
@
@I

- � -�

-O(n2)

-exp
separation

[Sipser ’80, Berman ’80, Micali ’81, Hromkovič&Schnitger ’03, Kapoutsis ’11,
KutribMalcher&P ’12]

Sakoda&Sipser Question

Problem ([Sakoda&Sipser ’78])
Do there exist polynomial simulations of

I 1NFAs by 2DFAs
I 2NFAs by 2DFAs ?

Another possible restriction:

The unary case #Σ = 1

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

[Chrobak ’86, Mereghetti&P ’01]

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

1NFA → 2DFA
In the unary case
this question is solved!
(polynomial conversion)

Optimal Simulation Between Unary Automata

The costs of the optimal simulations between automata are
different in the unary and in the general case

2DFA

1DFA 1NFA

2NFA

�
eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

@
@
@

@
@
@

@
@I

eΘ(
√

n ln n)

�

�
?

eΘ(
√

n ln n)

6

eΘ(
√

n ln n)

�

!�6 n2

�
?

2NFA → 2DFA
Even in the unary case
this question is open!

I eΘ(
√

n ln n) upper bound
(from 2NFA → 1DFA)

I Ω(n2) lower bound
(from 1NFA → 2DFA)

A better upper bound eO(ln2 n)

has been proved!

A Normal Form for Unary 2NFAs
[GeffertMereghetti&P ’03]

Quasi Sweeping Automata (qsNFA):

I nondeterministic choices and
I head reversals

are possible only when the head is visiting the endmarkers

Theorem (Quasi Sweeping Simulation)

Each n-state unary 2NFA A can be transformed into a 2NFA M s.t.
I M is quasi sweeping
I M has at most N ≤ 2n + 2 states
I M and A are “almost equivalent”

(possible differences only for inputs of length ≤ 5n2)

From Unary qsNFAs to 2DFAs
[GeffertMereghetti&P ’03]

I M a fixed qsNFA with N states
I An input w is accepted iff there is an accepting computation

visiting the left endmarker ≤ N times
I For p, q ∈ Q, k ≥ 1, we define the predicate

reachable(p, q, k) ≡ ∃computation path on w which
starts in the state p on the left endmarker
ends in the state q on the left endmarker
visits the left endmarker ≤ k more times

I Assuming acceptance on the left endmarker in state qf :
w ∈ L(M) iff reachable(q0, qf ,N) is true

How to Evaluate reachable?

Divide–and–conquer technique

function reachable(p, q, k)
if k = 1 then return reach1(p, q) //direct simulation
else begin

for each state r ∈ Q do
if reachable(p, r , bk/2c) and reachable(r , q, dk/2e)

then return true //recursion
return false

end

This strategy can be implemented by a 2DFA with eO(ln2 N) states
in order to compute reachable(q0, qf ,N),
i.e., to decide if the input w ∈ L(M)

From Unary 2NFAs by 2DFAs

A given unary 2NFA n states
⇓ Quasi Sweeping Simulation
M almost equivalent qsNFA N ≤ 2n + 2 states
⇓ Subexponential Deterministic Simulation
B 2DFA equivalent to M eO(ln2 N) states

Preliminary scan to accept/reject inputs of length ≤ 5n2
⇓

then simulation of B for longer inputs
C 2DFA equivalent to A eO(ln2 n) states

Theorem ([GeffertMereghetti&P ’03])
Each unary n-state 2NFA can be simulated
by a 2DFA with eO(ln2 n) states

Quasi Sweeping Simulation: Consequences

Using quasi sweeping simulation of unary 2NFAs several results
have been discovered:

(i) Subexponential simulation of unary 2NFAs by 2DFAs
Each unary n-state 2NFA can be simulated by a 2DFA
with eO(ln2 n) states [GeffertMereghetti&P ’03]

(ii) Polynomial complementation of unary 2NFAs
Inductive counting argument for qsNFAs

[GeffertMereghetti&P ’07]

(iii) Polynomial simulation of unary 2NFAs by 2DFAs
under the condition L = NL [Geffert&P ’11]

(iv) Polynomial simulation of unary 2NFAs by unambiguous 2NFAs
(unconditional) [Geffert&P ’11]

Restricted 2NFAs

Outer Nondeterministic Automata (OFAs) [GuillonGeffert&P ’12]:
I nondeterministic choices

are possible only when the head is visiting the endmarkers

Hence:
I No restrictions on the input alphabet
I No restrictions on head reversals
I Deterministic transitions on “real” input symbols

Outer Nondeterministic Automata (OFAs)

The results we obtained for the unary case
can be extended to 2OFAs: [GuillonGeffert&P ’12]

(i) Subexponential simulation of 2OFAs by 2DFAs
(ii) Polynomial complementation of 2OFAs
(iii) Polynomial simulation of 2OFAs by 2DFAs

under the condition L = NL
(iv) Polynomial simulation of 2OFAs by unambiguous 2OFAs

While in the unary case all the proofs rely
on the quasi sweeping simulation,

for 2OFAs we do not have a similar tool!

Outer Nondeterministic Automata (OFAs)

Procedure reach(p, q)
I Checks the existence of a computation segment

- from the left endmarker in the state p
- to the left endmarker in the state q
- not visiting the left endmarker in between

I Critical point: infinite loops
- Modification of a technique for the complementation
of 2DFAs [GeffertMereghetti&P ’07],
which refines a construction for space bounded TM [Sipser ’80]

Loops involving endmarkers are also possible
I They can be avoided by observing that for each accepting

computation visiting one endmarkers more than |Q| times
there exists a shorter accepting computation

Sakoda&Sipser Question: Current Knowledge

I Upper bounds

unary case
and
OFAs

general case

1NFA→2DFA 2NFA→2DFA

O(n2) eO(ln2 n)

optimal

exponential exponential

Unary case [Chrobak ’86, GeffertMereghetti&P ’03]
OFAs [GuillonGeffert&P ’12]

I Lower Bounds
In all the cases, the best known lower bound is Ω(n2)
[Chrobak ’86]

Final Remarks

Speaking about...

...Finite automata
usually we mean

One-way finite automata

...Turing machines

usually we mean
Two-way Turing machines

Why this difference?

In both cases:
I Computability aspects
I Complexity aspects

Minicomplexity
I Complexity theory of two-way finite automata

[Kapoutsis, DCFS 2012]

Final Remarks

I The question of Sakoda and Sipser is very challenging

I In the investigation of restricted versions many interesting
and not artificial models have been considered

I The results obtained under restrictions,
even if not solving the full problem,
are not trivial and, in many cases, very deep

I Connections with space and structural complexity
questions
techniques

I Connections with number theory (unary automata)

Thank you for your attention!

	Preliminaries
	The Question of Sakoda and Sipser
	Restricted 2DFAs
	The Unary Case
	Restricted 2NFAs
	Conclusion

