Pairs of Complementary Unary Languages with "Balanced" Nondeterministic Automata

Viliam Geffert ${ }^{1}$ Giovanni Pighizzini ${ }^{2}$

${ }^{1}$ Department of Computer Science
P. J. Šafárik University
Košice, Slovakia
${ }^{2}$ Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano Milano, Italy

LATIN 2010 - Oaxaca, Mexico - April 20th, 2010

A general problem

Compare the number of the states of complementary automata, i.e, automata accepting a regular language and its complement:

Given an n-state automaton accepting L, how many states are necessary and sufficient to accept L^{c} ?

- Deterministic automata (DFAs): trivial.
- Nondeterministic automata (NFAs)
- trivial upper bound: 2^{n}, optimal
- differences between the general case and the case of unary languages.

A general problem

Compare the number of the states of complementary automata, i.e, automata accepting a regular language and its complement:

Given an n-state automaton accepting L, how many states are necessary and sufficient to accept L^{c} ?

- Deterministic automata (DFAs): trivial.
- Nondeterministic automata (NFAs)
- trivial upper bound: 2^{n}, optimal
- differences between the general case and the case of unary languages.

A general problem

Compare the number of the states of complementary automata, i.e, automata accepting a regular language and its complement:

Given an n-state automaton accepting L, how many states are necessary and sufficient to accept L^{C} ?

- Deterministic automata (DFAs): trivial.
- Nondeterministic automata (NFAs):
- trivial upper bound: 2^{n}, optimal [Birget 1993]
- differences between the general case and the case of unary languages.

A general problem

Compare the number of the states of complementary automata, i.e, automata accepting a regular language and its complement:

Given an n-state automaton accepting L, how many states are necessary and sufficient to accept L^{C} ?

- Deterministic automata (DFAs): trivial.
- Nondeterministic automata (NFAs):
- trivial upper bound: 2^{n}, optimal [Birget 1993]
- differences between the general case and the case of unary languages. [Mera\&Pighizzini 2005]

Size of complementary NFAs: general vs. unary case

There are languages having "small" complementary NFAs:
For each integer n there exists a regular language L such that:

- L is accepted by an n-state NFA,
- $L^{\text {c }}$ is accepted by an NFA with at most $n+1$ states,
- the minimum DFA accepting L requires 2^{n} states. Hence:
- I is a witness of the maximal state gap between NFAs and DFAS,
- the gap between the total size of smallest NFAs accepting L and L^{C} and corresponding DFAs is exponential.
The language L is defined over a two letter alphabet.
The unary case looks completely different:
If a unary language L has a "small" NFA then each NFA accepting $L^{\text {c }}$ must be "large'

Size of complementary NFAs: general vs. unary case

There are languages having "small" complementary NFAs:
For each integer n there exists a regular language L such that:

- L is accepted by an n-state NFA,
- $L^{\text {c }}$ is accepted by an NFA with at most $n+1$ states,
- the minimum DFA accepting L requires 2^{n} states.

Hence:

- L is a witness of the maximal state gap between NFAs and DFAS,
- the gap between the total size of smallest NFAs accepting L and L^{C} and corresponding DFAs is exponential. The language I is defined over a two letter alphabet

The unary case looks completely different:

Size of complementary NFAs: general vs. unary case

There are languages having "small" complementary NFAs:
For each integer n there exists a regular language L such that:

- L is accepted by an n-state NFA,
- $L^{\text {c }}$ is accepted by an NFA with at most $n+1$ states,
- the minimum DFA accepting L requires 2^{n} states.

Hence:

- L is a witness of the maximal state gap between NFAs and DFAs,
- the gap between the total size of smallest NFAs accepting L and L^{c} and corresponding DFAs is exponential.
The language L is defined over a two letter alphabet.
The unary case looks completely different:

Size of complementary NFAs: general vs. unary case

There are languages having "small" complementary NFAs:
For each integer n there exists a regular language L such that:

- L is accepted by an n-state NFA,
- $L^{\text {c }}$ is accepted by an NFA with at most $n+1$ states,
- the minimum DFA accepting L requires 2^{n} states.

Hence:

- L is a witness of the maximal state gap between NFAs and DFAs,
- the gap between the total size of smallest NFAs accepting L and L^{c} and corresponding DFAs is exponential.
The language L is defined over a two letter alphabet.
The unary case looks completely different:

There are languages having "small" complementary NFAs:
For each integer n there exists a regular language L such that:

- L is accepted by an n-state NFA,
- L^{c} is accepted by an NFA with at most $n+1$ states,
- the minimum DFA accepting L requires 2^{n} states.

Hence:

- L is a witness of the maximal state gap between NFAs and DFAs,
- the gap between the total size of smallest NFAs accepting L and L^{c} and corresponding DFAs is exponential.
The language L is defined over a two letter alphabet.
The unary case looks completely different:

> If a unary language L has a "small" NFA then each NFA accepting L^{c} must be "large".

Unary case $\Sigma=\{a\}$

The cost of the optimal simulation of n-state NFAs by DFAs in the unary case reduces from 2^{n} to the function $F(n)=e^{\Theta(\sqrt{n \cdot \ln n})}$, which is subexponential but superpolynomial. [Chrobak 1986]

However:
If L is a unary language accepted by an n-state NFA s.t. the minimum equivalent DFA requires $F(n)$ states, then also each NFA accepting L^{C} requires at least $F(n)$ states.

In other words:

- If I is a witness of the maximal state gap between unary NFAS and equivalent DFAs then each NFA for L^{C} must have as many states as the minimum DFA
- Hence, taking into account the total number of states of smallest NFAs accepting L and L^{c}, the superpolynomial gap with the size of DFAs disappears.

Unary case $\Sigma=\{a\}$

The cost of the optimal simulation of n-state NFAs by DFAs in the unary case reduces from 2^{n} to the function $F(n)=e^{\Theta(\sqrt{n \cdot \ln n})}$, which is subexponential but superpolynomial. [Chrobak 1986] However:

If L is a unary language accepted by an n-state NFA s.t. the minimum equivalent DFA requires $F(n)$ states, then also each NFA accepting $L^{\text {c }}$ requires at least $F(n)$ states. [Mera\&Pighizzini 2005]

In other words:

- If L is a witness of the maximal state gap between unary NFAs and equivalent DFAs then each NFA for L^{c} must have as many states as the minimum DFA.
- Hence, taking into account the total number of states of smallest NFAs accepting L and L^{c}, the superpolynomial gap with the size of DFAs disappears.

Unary case $\Sigma=\{a\}$

The cost of the optimal simulation of n-state nFAs by DFAs in the unary case reduces from 2^{n} to the function $F(n)=e^{\Theta(\sqrt{n \cdot \ln n})}$, which is subexponential but superpolynomial. [Chrobak 1986]

However:
If L is a unary language accepted by an n-state NFA s.t. the minimum equivalent DFA requires $F(n)$ states, then also each NFA accepting $L^{\text {c }}$ requires at least $F(n)$ states. [Mera\&Pighizzini 2005]

In other words:

- If L is a witness of the maximal state gap between unary NFAs and equivalent DFAs then each NFA for L^{C} must have as many states as the minimum DFA.
- Hence, taking into account the total number of states of smallest NFAs accepting L and L^{c}, the superpolynomial gap with the size of DFAs disappears.

Unary case $\Sigma=\{a\}$

The cost of the optimal simulation of n-state nFAs by DFAs in the unary case reduces from 2^{n} to the function $F(n)=e^{\Theta(\sqrt{n \cdot \ln n})}$, which is subexponential but superpolynomial. [Chrobak 1986] However:

If L is a unary language accepted by an n-state NFA s.t. the minimum equivalent DFA requires $F(n)$ states, then also each NFA accepting $L^{\text {c }}$ requires at least $F(n)$ states. [Mera\&Pighizzini 2005] In other words:

- If L is a witness of the maximal state gap between unary NFAs and equivalent DFAs then each NFA for L^{c} must have as many states as the minimum DFA.
- Hence, taking into account the total number of states of smallest NFAs accepting L and L^{c}, the superpolynomial gap with the size of DFAs disappears.

Paper contributions

How large can be the gap between the total size of pairs of NFAs accepting a unary language and its complement and the minimum DFA ?

> We prove that this gap is superpolynomial, not too far from $F(n)$:
> There are infinitely many unary languages I such that:
> - the state gap between NFAs and DFAs accepting L is a little bit smaller than $F(n)$, but it is still superpolynomial,
> - the same gap is achieved in the case of L^{C}

> We also prove superpolynomial gaps between:
> - the sizes of unary unambiguous automata and of DFAs,
> - the sizes of unary self-verifying automata and of DFAs.

Paper contributions

How large can be the gap between the total size of pairs of NFAs accepting a unary language and its complement and the minimum DFA ?

We prove that this gap is superpolynomial, not too far from $F(n)$:

> There are infinitely many unary languages L such that:
> - the state gap between NFAs and DFAs accepting L is a little bit smaller than $F(n)$, but it is still superpolvnomial.
> - the same gap is achieved in the case of L^{c}

> We also prove superpolynomial gaps between:
> o the sizes of unary unambiguous automata and of DFAS,
> - the sizes of unary self-verifying automata and of DFAs.

How large can be the gap between the total size of pairs of NFAs accepting a unary language and its complement and the minimum DFA ?

We prove that this gap is superpolynomial, not too far from $F(n)$:
There are infinitely many unary languages L such that:

- the state gap between NFAs and DFAs accepting L is a little bit smaller than $F(n)$, but it is still superpolynomial,
- the same gap is achieved in the case of L^{c}.

We also prove superpolynomial gaps between:

- the sizes of unary unambiguous automata and of DFAS,
- the sizes of unary self-verifying automata and of DFAS.

Paper contributions

How large can be the gap between the total size of pairs of NFAs accepting a unary language and its complement and the minimum DFA ?

We prove that this gap is superpolynomial, not too far from $F(n)$:
There are infinitely many unary languages L such that:

- the state gap between NFAs and DFAs accepting L is a little bit smaller than $F(n)$, but it is still superpolynomial,
- the same gap is achieved in the case of L^{c}.

We also prove superpolynomial gaps between:

- the sizes of unary unambiguous automata and of DFAs,
- the sizes of unary self-verifying automata and of DFAs.

Unary DFAS and cyclic languages

Input alphabet $\Sigma=\{a\}$

As a special case of unary regular languages are cyclic languages:
$I \subseteq\{a\}^{*}$ is said to be cyclic iff it is accented by a DFA whose transition graph is just one loop.

Unary DFAS and cyclic languages

Input alphabet $\Sigma=\{a\}$

As a special case of unary regular languages are cyclic languages:
$I \subseteq\left\}^{*}\right.$ is said to be cyclic iff it is accented by a DFA whose
transition graph is just one loop.

Unary DFAs and cyclic languages

Input alphabet $\Sigma=\{a\}$

As a special case of unary regular languages are cyclic languages:
$L \subseteq\{a\}^{*}$ is said to be cyclic iff it is accepted by a DFA whose transition graph is just one loop.

The witness languages

Let us consider:

- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s-1}$ a sequence of $s \geq 1$ powers of different primes,
- the smallest integer $\hat{s} \geq s$ dividing one $\lambda_{\ell}, \ell \in\{0, \ldots, s-1\}$ We define the language:

The witness languages

Let us consider:

- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s-1}$ a sequence of $s \geq 1$ powers of different primes,
- the smallest integer $\hat{s} \geq s$ dividing one $\lambda_{\ell}, \ell \in\{0, \ldots, s-1\}$ We define the language:

Let us consider:

- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s-1}$ a sequence of $s \geq 1$ powers of different primes,
- the smallest integer $\hat{s} \geq s$ dividing one $\lambda_{\ell}, \ell \in\{0, \ldots, s-1\}$.

We define the language:

Let us consider:

- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s-1}$ a sequence of $s \geq 1$ powers of different primes,
- the smallest integer $\hat{s} \geq s$ dividing one $\lambda_{\ell}, \ell \in\{0, \ldots, s-1\}$.

We define the language:

$$
L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}
$$

Let us consider:

- $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{s-1}$ a sequence of $s \geq 1$ powers of different primes,
- the smallest integer $\hat{s} \geq s$ dividing one $\lambda_{\ell}, \ell \in\{0, \ldots, s-1\}$.

We define the language:

$$
L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}
$$

How to recognize L and L^{c} ?

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

Nondeterministic version:

- guess i, with $0 \leq i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i>s$ then reject

Nondeterministic version:

- guess i, with $0<i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

Nondeterministic version:

- guess i, with $0<i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

Nondeterministic version:

- guess i, with $0<i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

Nondeterministic version:

- guess i, with $0 \leq i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

Nondeterministic version:

- guess i, with $0 \leq i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

Nondeterministic version:

- guess i, with $0 \leq i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}

How to recognize $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

To decide if an input string a^{k} belongs to L we can use the following procedure:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

Nondeterministic version:

- guess i, with $0 \leq i<s$
- accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$

The nondeterministic version can be implemented by an NFA A^{+}.

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen: guess i, with $0 \leq i<s$
- transition i leads to the i th loop, which implements: accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$ length of the i th loop: $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)$
Size of A^{+}
- Summing up: total number of states: $1+\sum_{i=0}^{s-1} \operatorname{lcm}\left(\hat{s}, \lambda_{i}\right)$
- However $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)= \begin{cases}\hat{s} \cdot \lambda_{i}, & \text { if } i \neq \ell ; \\ \lambda_{\ell}, & \text { otherwise. }\end{cases}$
- Hence, the total number of the states is:

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen:
- transition i leads to the i th loop, which implements: accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$ length of the i th loop: $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)$
Size of A^{+}
- Summing up: total number of states: $1+\sum_{i}^{5-1} \operatorname{lcm}\left(\hat{s}, \lambda_{i}\right)$
- However $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)= \begin{cases}\hat{s} \cdot \lambda_{i}, & \text { if } i \neq \ell ; \\ \lambda_{\ell}, & \text { otherwise }\end{cases}$
- Hence, the total number of the states is:

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen: guess i, with $0 \leq i<s$
- transition i leads to the i th loop, which implements:
length of the i th loop: $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)$
- Summing up:

- However $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)= \begin{cases}\hat{s} \cdot \lambda_{i}, & \text { if } i \neq \ell ; \\ \lambda_{\ell}, & \text { otherwise }\end{cases}$
- Hence, the total number of the states is:

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen: guess i, with $0 \leq i<s$
- transition i leads to the i th loop, which implements: accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$
- Hence, the total number of the states is:

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen: guess i, with $0 \leq i<s$
- transition i leads to the i th loop, which implements: accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$ length of the i th loop: $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)$

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen: guess i, with $0 \leq i<s$
- transition i leads to the i th loop, which implements: accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$ length of the i th loop: $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)$
Size of A^{+}:
- Summing up: total number of states: $1+\sum_{i=0}^{s-1} \operatorname{lcm}\left(\hat{s}, \lambda_{i}\right)$ - However $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)=\{$ otherwise
- Hence, the total number of the states is:

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen: guess i, with $0 \leq i<s$
- transition i leads to the i th loop, which implements: accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$ length of the i th loop: $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)$
Size of A^{+}:
- Summing up: total number of states: $1+\sum_{i=0}^{s-1} \operatorname{lcm}\left(\hat{s}, \lambda_{i}\right)$
- However $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)= \begin{cases}\hat{s} \cdot \lambda_{i}, & \text { if } i \neq \ell ; \\ \lambda_{\ell}, & \text { otherwise. }\end{cases}$
- Hence, the total number of the states is:

An NFA for $L=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i=k \bmod \lambda_{i}\right\}$

NFA A^{+}:

- one initial state and s disjoint loops
- in the initial state one among s possible transitions is chosen: guess i, with $0 \leq i<s$
- transition i leads to the i th loop, which implements: accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i}=i$ length of the i th loop: $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)$
Size of A^{+}:
- Summing up: total number of states: $1+\sum_{i=0}^{s-1} \operatorname{lcm}\left(\hat{s}, \lambda_{i}\right)$
- However $\operatorname{Icm}\left(\hat{s}, \lambda_{i}\right)= \begin{cases}\hat{s} \cdot \lambda_{i}, & \text { if } i \neq \ell ; \\ \lambda_{\ell}, & \text { otherwise. }\end{cases}$
- Hence, the total number of the states is:

$$
N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}
$$

An example

$$
\text { Let } \lambda_{0}=2^{2}, \lambda_{1}=5 \text {. Then } \hat{s}=s=2 \text {. }
$$

An example

Let $\lambda_{0}=2^{2}, \lambda_{1}=5$. Then $\hat{s}=s=2$.
$L=\left\{a^{k} \mid\left(k \bmod 2=0=k \bmod 2^{2}\right) \vee(k \bmod 2=1=k \bmod 5)\right\}$
$=\left\{a^{k} \mid\left(k \bmod 2^{2}=0\right) \vee(k \bmod 2=1=k \bmod 5)\right\}$ $=\left(a^{4}\right)^{*} \cup a\left(a^{10}\right)^{*}$.

An example

Let $\lambda_{0}=2^{2}, \lambda_{1}=5$. Then $\hat{s}=s=2$.
$L=\left\{a^{k} \mid\left(k \bmod 2=0=k \bmod 2^{2}\right) \vee(k \bmod 2=1=k \bmod 5)\right\}$
$=\left\{a^{k} \mid\left(k \bmod 2^{2}=0\right) \vee(k \bmod 2=1=k \bmod 5)\right\}$
$=\left(a^{4}\right)^{*} \cup a\left(a^{10}\right)^{*}$.

An example

Let $\lambda_{0}=2^{2}, \lambda_{1}=5$. Then $\hat{s}=s=2$.
$L=\left\{a^{k} \mid\left(k \bmod 2=0=k \bmod 2^{2}\right) \vee(k \bmod 2=1=k \bmod 5)\right\}$
$=\left\{a^{k} \mid\left(k \bmod 2^{2}=0\right) \vee(k \bmod 2=1=k \bmod 5)\right\}$
$=\left(a^{4}\right)^{*} \cup a\left(a^{10}\right)^{*}$.
NFA A^{+}for L :

How to accept the complement of L

Deterministic procedure to decide whether or not $a^{k} \in L$:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0}=0$
- if $i=1$ then accept iff $k \bmod \lambda_{1}=1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then reject

To recognize L^{c} we just need to replace "accept" with "reject" and vice versa, in the previous procedure.

How to accept the complement of L

Deterministic procedure to decide whether or not $a^{k} \in L^{c}$:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then reject iff $k \bmod \lambda_{0}=0$
- if $i=1$ then reject iff $k \bmod \lambda_{1}=1$
- ...
- if $i=s-1$ then reject iff $k \bmod \lambda_{s-1}=s-1$
- if $i \geq s$ then accept

How to accept the complement of L

Deterministic procedure to decide whether or not $a^{k} \in L^{c}$:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0} \neq 0$
- if $i=1$ then accept iff $k \bmod \lambda_{1} \neq 1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1} \neq s-1$
- if $i \geq s$ then accept

How to accept the complement of L

Deterministic procedure to decide whether or not $a^{k} \in L^{c}$:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0} \neq 0$
- if $i=1$ then accept iff $k \bmod \lambda_{1} \neq 1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1} \neq s-1$
- if $i \geq s$ then accept

Nondeterministic version:

- guess i, with $0 \leq i<s$
- if $i<s$ then accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i} \neq i$
- if $i \geq s$ then accept iff $k \bmod \hat{s}=i$

Hence:

How to accept the complement of L

Deterministic procedure to decide whether or not $a^{k} \in L^{c}$:

- $i \leftarrow k \bmod \hat{s}$
- if $i=0$ then accept iff $k \bmod \lambda_{0} \neq 0$
- if $i=1$ then accept iff $k \bmod \lambda_{1} \neq 1$
- ...
- if $i=s-1$ then accept iff $k \bmod \lambda_{s-1} \neq s-1$
- if $i \geq s$ then accept

Nondeterministic version:

- guess i, with $0 \leq i<s$
- if $i<s$ then accept iff $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i} \neq i$
- if $i \geq s$ then accept iff $k \bmod \hat{s}=i$

Hence:
$\left.L^{\mathrm{c}}=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i \wedge k \bmod \lambda_{i} \neq i\right\} \cup\left\{a^{k} \mid k \bmod \hat{s} \geq s\right)\right\}$

An NFA A^{-}for

$$
\left.L^{c}=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i \wedge k \bmod \lambda_{i} \neq i\right\} \cup\left\{a^{k} \mid k \bmod \hat{s} \geq s\right)\right\}
$$

Same transition graph as A^{+}:

- For $i=0, \ldots, s-1$, the i th loop is used to accept if $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i} \neq i$
- however, the $(s-1)$ th loop accepts also if $k \bmod \hat{s} \geq s$.
A^{+}and A^{-}have the same size $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$
It can be observed that A^{+}and A^{-}are unambiguous.

An NFA A^{-}for

$$
\left.L^{c}=\bigcup_{i=0}^{s-1}\left\{a^{k} \mid k \bmod \hat{s}=i \wedge k \bmod \lambda_{i} \neq i\right\} \cup\left\{a^{k} \mid k \bmod \hat{s} \geq s\right)\right\}
$$

Same transition graph as A^{+}:

- For $i=0, \ldots, s-1$, the i th loop is used to accept if $k \bmod \hat{s}=i$ and $k \bmod \lambda_{i} \neq i$
- however, the $(s-1)$ th loop accepts also if $k \bmod \hat{s} \geq s$.
A^{+}and A^{-}have the same size $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$.
It can be observed that A^{+}and A^{-}are unambiguous.

The previous example: how to accept the complement
Let $\lambda_{0}=2^{2}, \lambda_{1}=5$. Then $\hat{s}=s=2$.

$$
\begin{array}{r}
L=\left\{a^{k} \mid \text { if } k \text { is even then } k \bmod 2^{2}=0,\right. \\
\text { if } k \text { is odd then } k \bmod 5=1\}
\end{array}
$$

Hence:

The previous example: how to accept the complement
Let $\lambda_{0}=2^{2}, \lambda_{1}=5$. Then $\hat{s}=s=2$.

$$
\begin{array}{r}
L=\left\{a^{k} \mid \text { if } k \text { is even then } k \bmod 2^{2}=0\right. \\
\text { if } k \text { is odd then } k \bmod 5=1\}
\end{array}
$$

Hence:

$$
\begin{aligned}
& L^{c}=\left\{a^{k} \mid \text { if } k \text { is even then } k \bmod 2^{2} \neq 0,\right. \\
&\text { if } k \text { is odd then } k \bmod 5 \neq 1\} \\
&=a^{2}\left(a^{4}\right)^{*} \cup\left(a^{3}+a^{5}+a^{7}+a^{9}\right)\left(a^{10}\right)^{*} .
\end{aligned}
$$

The previous example: how to accept the complement
Let $\lambda_{0}=2^{2}, \lambda_{1}=5$. Then $\hat{s}=s=2$.

$$
\begin{array}{r}
L=\left\{a^{k} \mid \text { if } k \text { is even then } k \bmod 2^{2}=0\right. \\
\text { if } k \text { is odd then } k \bmod 5=1\}
\end{array}
$$

Hence:

$$
\begin{aligned}
L^{\mathrm{c}} & =\left\{a^{k} \mid \text { if } k \text { is even then } k \bmod 2^{2} \neq 0,\right. \\
& \text { if } k \text { is odd then } k \bmod 5 \neq 1\} \\
& =a^{2}\left(a^{4}\right)^{*} \cup\left(a^{3}+a^{5}+a^{7}+a^{9}\right)\left(a^{10}\right)^{*} .
\end{aligned}
$$

The witness languages and their automata

By previous discussion and by investigating the structure of the minimum DFA accepting L, we proved that:

Theorem

- The transition graph of the minimum DFA A accepting L is a loop of $\lambda_{0} \cdot \lambda_{1} \cdots \lambda_{s-1}$ states.
- L and L^{c} are accepted by two unambiguous NFAs A^{+}and A^{-} of at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states.

We now study the following question:

The witness languages and their automata

By previous discussion and by investigating the structure of the minimum DFA accepting L, we proved that:

Theorem

- The transition graph of the minimum DFA A accepting L is a loop of $\lambda_{0} \cdot \lambda_{1} \cdots \lambda_{s-1}$ states.
- L and L^{c} are accepted by two unambiguous NFAs A^{+}and A^{-} of at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states.

We now study the following question:

and of the minimum DFA A ?

The witness languages and their automata

By previous discussion and by investigating the structure of the minimum DFA accepting L, we proved that:

Theorem

- The transition graph of the minimum DFA A accepting L is a loop of $\lambda_{0} \cdot \lambda_{1} \cdots \lambda_{s-1}$ states.
- L and L^{c} are accepted by two unambiguous NFAs A^{+}and A^{-} of at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states.

We now study the following question:

The witness languages and their automata

By previous discussion and by investigating the structure of the minimum DFA accepting L, we proved that:

Theorem

- The transition graph of the minimum DFA A accepting L is a loop of $\lambda_{0} \cdot \lambda_{1} \cdots \lambda_{s-1}$ states.
- L and L^{c} are accepted by two unambiguous NFAs A^{+}and A^{-} of at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states.

We now study the following question:
How large is the gap between N and $\lambda_{0} \cdot \lambda_{1} \cdots \lambda_{s-1}$, i.e, between the size of NFAs A^{+}, A^{-}, and of the minimum DFA A ?

The Landau Function $F(n)$

- Initially investigated in group theory. [Landau 1903, 1909]
- Fundamental role in the analysis of simulations among various models of unary automata.

Definition

For a positive integer n :

- Sharp estimation:

The Landau Function $F(n)$

- Initially investigated in group theory. [Landau 1903, 1909]
- Fundamental role in the analysis of simulations among various models of unary automata. [Chrobak 1986]

Definition

For a positive integer n.
\square

- Sharp estimation:

The Landau Function $F(n)$

- Initially investigated in group theory. [Landau 1903, 1909]
- Fundamental role in the analysis of simulations among various models of unary automata. [Chrobak 1986]

Definition

For a positive integer n :

$$
F(n)=\max \left\{\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right) \mid \lambda_{0}+\cdots+\lambda_{s-1}=n\right\},
$$

where $\lambda_{0}, \ldots, \lambda_{s-1}$ denote arbitrary positive integers.

- Sharp estimation:

The Landau Function $F(n)$

- Initially investigated in group theory. [Landau 1903, 1909]
- Fundamental role in the analysis of simulations among various models of unary automata. [Chrobak 1986]

Definition

For a positive integer n :

$$
F(n)=\max \left\{\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right) \mid \lambda_{0}+\cdots+\lambda_{s-1}=n\right\},
$$

where $\lambda_{0}, \ldots, \lambda_{s-1}$ denote arbitrary positive integers.

- Sharp estimation: [Szalay 1980]

$$
F(n)=e^{(1+o(1)) \cdot \sqrt{n \cdot \ln n}}
$$

The Landau Function $F(n)$

$$
F(n)=\max \left\{\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right) \mid \lambda_{0}+\cdots+\lambda_{s-1}=n\right\}
$$

We observe that:

- $\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right)=\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}, 1, \ldots, 1\right)$)
it is enough to require that $\lambda_{0}+\cdots+\lambda_{s-1} \leq n$.
- If $\lambda_{i}=a \cdot b$ with $\operatorname{gcd}(a, b)=1$ then $a+b \leq a \cdot b$:
replacing λ_{i} with a and b does not increase the sum and does not change the least common multiple of $\lambda_{j} \mathrm{~s}$.
- If λ_{i} divides λ_{j} then λ_{i} can be removed without changing the least common multiple.

Hence:

where $\lambda_{0}, \ldots, \lambda_{s-1}$ denote powers of different primes, exactly as in the definition of the witness lanouage I

The Landau Function $F(n)$

$$
F(n)=\max \left\{\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right) \mid \lambda_{0}+\cdots+\lambda_{s-1}=n\right\}
$$

We observe that:

- $\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right)=\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}, 1, \ldots, 1\right)$: it is enough to require that $\lambda_{0}+\cdots+\lambda_{s-1} \leq n$.
replacing λ_{i} with a and b does not increase the sum and does not change the least common multiple of $\lambda_{j} \mathrm{~s}$.
- If λ_{i} divides λ_{j} then λ_{i} can be removed without changing the least common multiple.

H ence:

where $\lambda_{0}, \ldots, \lambda_{s-1}$ denote powers of different primes, exactly as in
the definition of the mitness language I

$$
F(n)=\max \left\{\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right) \mid \lambda_{0}+\cdots+\lambda_{s-1}=n\right\}
$$

We observe that:

- $\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right)=\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}, 1, \ldots, 1\right)$: it is enough to require that $\lambda_{0}+\cdots+\lambda_{s-1} \leq n$.
- If $\lambda_{i}=a \cdot b$ with $\operatorname{gcd}(a, b)=1$ then $a+b \leq a \cdot b$: replacing λ_{i} with a and b does not increase the sum and does not change the least common multiple of $\lambda_{j} \mathrm{~s}$.

- If λ_{i} divides λ_{j} then λ_{i} can be removed without changing the least common multiple.

$$
F(n)=\max \left\{\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right) \mid \lambda_{0}+\cdots+\lambda_{s-1}=n\right\}
$$

We observe that:

- $\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right)=\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}, 1, \ldots, 1\right)$: it is enough to require that $\lambda_{0}+\cdots+\lambda_{s-1} \leq n$.
- If $\lambda_{i}=a \cdot b$ with $\operatorname{gcd}(a, b)=1$ then $a+b \leq a \cdot b$: replacing λ_{i} with a and b does not increase the sum and does not change the least common multiple of $\lambda_{j} \mathrm{~s}$.
- If λ_{i} divides λ_{j} then λ_{i} can be removed without changing the least common multiple.
Hence:
where $\lambda_{0}, \ldots, \lambda_{s-1}$ denote powers of different primes, exactly as in

$$
F(n)=\max \left\{\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right) \mid \lambda_{0}+\cdots+\lambda_{s-1}=n\right\}
$$

We observe that:

- $\operatorname{lcm}\left(\lambda_{0}, \ldots, \lambda_{s-1}\right)=\operatorname{Icm}\left(\lambda_{0}, \ldots, \lambda_{s-1}, 1, \ldots, 1\right)$: it is enough to require that $\lambda_{0}+\cdots+\lambda_{s-1} \leq n$.
- If $\lambda_{i}=a \cdot b$ with $\operatorname{gcd}(a, b)=1$ then $a+b \leq a \cdot b$: replacing λ_{i} with a and b does not increase the sum and does not change the least common multiple of $\lambda_{j} \mathrm{~s}$.
- If λ_{i} divides λ_{j} then λ_{i} can be removed without changing the least common multiple.
Hence:

$$
F(n)=\max \left\{\lambda_{0} \cdots \lambda_{s-1} \mid \lambda_{0}+\cdots+\lambda_{s-1} \leq n\right\}
$$

where $\lambda_{0}, \ldots, \lambda_{s-1}$ denote powers of different primes, exactly as in the definition of the witness language L.

Witness language and Landau Function

Let us fix an integer n and some powers $\lambda_{0}, \ldots, \lambda_{s-1}$ of different primes such that:

$$
\lambda_{0}+\cdots+\lambda_{s-1} \leq n \quad \text { and } \quad F(n)=\lambda_{0} \cdots \lambda_{s-1} .
$$

The witness language L and its complement are both accepted

- by NFAs with at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states,
- by minimum DFAs with $F(n)$ states.

Using

- some properties of $F(n)$
- the Bertrand's postulate
we proved that $\sqrt{n \cdot \ln n} \geq \Omega\left(\sqrt[3]{\left.N \cdot \ln ^{2} N\right)}\right.$
Hence:

Witness language and Landau Function

Let us fix an integer n and some powers $\lambda_{0}, \ldots, \lambda_{s-1}$ of different primes such that:

$$
\lambda_{0}+\cdots+\lambda_{s-1} \leq n \quad \text { and } \quad F(n)=\lambda_{0} \cdots \lambda_{s-1}
$$

The witness language L and its complement are both accepted:

- by NFAs with at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states,
- by minimum dFAs with $F(n)$ states.

- some properties of $F(n)$
- the Bertrand's postulate
we proved that $\sqrt{n \cdot \ln n} \geq \Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)$
Hence:

Witness language and Landau Function

Let us fix an integer n and some powers $\lambda_{0}, \ldots, \lambda_{s-1}$ of different primes such that:

$$
\lambda_{0}+\cdots+\lambda_{s-1} \leq n \quad \text { and } \quad F(n)=\lambda_{0} \cdots \lambda_{s-1}
$$

The witness language L and its complement are both accepted:

- by NFAs with at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states,
- by minimum dFAs with $F(n)$ states.

Using:

- some properties of $F(n)$ [Nicolas 1968, Grantham 1995],
- the Bertrand's postulate [Ramanujan 1919], we proved that $\sqrt{n \cdot \ln n} \geq \Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)$.

Hence:

Witness language and Landau Function

Let us fix an integer n and some powers $\lambda_{0}, \ldots, \lambda_{s-1}$ of different primes such that:

$$
\lambda_{0}+\cdots+\lambda_{s-1} \leq n \quad \text { and } \quad F(n)=\lambda_{0} \cdots \lambda_{s-1}
$$

The witness language L and its complement are both accepted:

- by NFAs with at most $N=1+\lambda_{\ell}+\hat{s} \cdot \sum_{i=0, i \neq \ell}^{s-1} \lambda_{i}$ states,
- by minimum dFAs with $F(n)$ states.

Using:

- some properties of $F(n)$ [Nicolas 1968, Grantham 1995],
- the Bertrand's postulate [Ramanujan 1919], we proved that $\sqrt{n \cdot \ln n} \geq \Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)$.

Hence:

$$
F(n)=e^{(1+o(1)) \cdot \sqrt{n \cdot \ln n}} \geq e^{\Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)}
$$

Summing up, for infinitely many N we provided a language L s.t.:

- L and L^{c} are accepted by two nfas A^{+}and A^{-}using at most N states,
- the minimum DFA accepting L (or L^{c}) must use at least $e^{\Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)}$ states.
Hence:
The gap between the total number of states of the pair of complementary unary NFAs A^{+}, A^{-}and the minimum equivalent DFA is superpolynomial

Remark: actually we can show the existence of a witness language L for each sufficiently large N.

The exponential gap

Summing up, for infinitely many N we provided a language L s.t.:

- L and L^{c} are accepted by two nfas A^{+}and A^{-}using at most N states,
- the minimum DFA accepting L (or L^{c}) must use at least $e^{\Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)}$ states.

Hence:
The gap between the total number of states of the pair of complementary unary NFAs A^{+}, A^{-}and the minimum equivalent DFA is superpolynomial.

Remark: actually we can show the existence of a witness language L for each sufficiently large N.

The exponential gap

Summing up, for infinitely many N we provided a language L s.t.:

- L and L^{c} are accepted by two nfas A^{+}and A^{-}using at most N states,
- the minimum DFA accepting L (or L^{c}) must use at least $e^{\Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)}$ states.

Hence:
The gap between the total number of states of the pair of complementary unary NFAs A^{+}, A^{-}and the minimum equivalent DFA is superpolynomial.

Remark: actually we can show the existence of a witness language
L for each sufficiently large N.

Self-verifying automata (SvFAs)

Finite automata with a "symmetric form" of nondeterminism [Ďuriš, Hromkovič, Rolim \& Schnitger 1977].

The state set is partitioned in three groups:

- accepting states ("yes")
- rejecting states ("no")
- neutral states ("I do not know")

It is required that:

- on each input string at least one accepting or one rejecting state is reached,
- on a same input string both accepting and rejecting states are not reachable.

Self-verifying automata (SVFAs)

Finite automata with a "symmetric form" of nondeterminism [Ďuriš, Hromkovič, Rolim \& Schnitger 1977].

The state set is partitioned in three groups:

- accepting states ("yes")
- rejecting states ("no")
- neutral states ("I do not know")

It is required that:

- on each input string at least one accepting or one rejecting state is reached,
- on a same input string both accepting and rejecting states are not reachable.

Self-verifying automata (SVFAs)

Finite automata with a "symmetric form" of nondeterminism [Ďuriš, Hromkovič, Rolim \& Schnitger 1977].

The state set is partitioned in three groups:

- accepting states ("yes")
- rejecting states ("no")
- neutral states ("I do not know")

It is required that:

- on each input string at least one accepting or one rejecting state is reached,
- on a same input string both accepting and rejecting states are not reachable.

Self-verifying automata (SVFAs)

SVFAs characterize the class of regular languages.
Each n-state SVFA can be converted into an equivalent DFA with $O\left(3^{n / 3}\right) \approx O\left(1.45^{n}\right)$ states. This cost is tight, for an input alphabet of at least two letters.

What about the tight cost in the unary case?

- It must be strictly smaller than $F(n)$, the cost of the conversion of unary NFAs into DFAs.
- As a consequence of the gap between complementary unary NFAS and DFAs we get that this cost is superpolynomial, not too far from $F(n)$.
- This is proved by observing how a SVFA can be obtained from two complementary NFAs.

Self-verifying automata (SVFAs)

SVFAs characterize the class of regular languages.
Each n-state SVFA can be converted into an equivalent DFA with $O\left(3^{n / 3}\right) \approx O\left(1.45^{n}\right)$ states. This cost is tight, for an input alphabet of at least two letters. [Jirásková \& Pighizzini 2009]

What about the tight cost in the unary case?

- It must be strictly smaller than $F(n)$, the cost of the conversion of unary NFAs into DFAs.
- As a consequence of the gap between complementary unary NFAS and DFAs we get that this cost is superpolynomial, not too far from $F(n)$
- This is proved by observing how a SVFA can be obtained from two complementary NFAs.

Self-verifying automata (SVFAs)

SVFAs characterize the class of regular languages.
Each n-state SVFA can be converted into an equivalent DFA with $O\left(3^{n / 3}\right) \approx O\left(1.45^{n}\right)$ states. This cost is tight, for an input alphabet of at least two letters. [Jirásková \& Pighizzini 2009]

What about the tight cost in the unary case?

- It must be strictly smaller than $F(n)$, the cost of the conversion of unary NFAs into DFAs.
- As a consequence of the gap between complementary unary NFAS and DFAs we get that this cost is superpolynomial, not too far from $F(n)$
- This is proved by observing how a SVFA can be obtained from two complementary NFAs.

Self-verifying automata (SVFAs)

SVFAs characterize the class of regular languages.
Each n-state SVFA can be converted into an equivalent DFA with $O\left(3^{n / 3}\right) \approx O\left(1.45^{n}\right)$ states. This cost is tight, for an input alphabet of at least two letters. [Jirásková \& Pighizzini 2009]

What about the tight cost in the unary case?

- It must be strictly smaller than $F(n)$, the cost of the conversion of unary NFAs into DFAs. [J\&P 2009]
- As a consequence of the gap between complementary unary NFAs and DFAs we get that this cost is superpolynomial, not too far from $F(n)$
- This is proved by observing how a SVFA can be obtained from two complementary NFAs.

Self-verifying automata (SVFAs)

SVFAs characterize the class of regular languages.
Each n-state SVFA can be converted into an equivalent DFA with $O\left(3^{n / 3}\right) \approx O\left(1.45^{n}\right)$ states. This cost is tight, for an input alphabet of at least two letters. [Jirásková \& Pighizzini 2009]

What about the tight cost in the unary case?

- It must be strictly smaller than $F(n)$, the cost of the conversion of unary NFAs into DFAs. [J\&P 2009]
- As a consequence of the gap between complementary unary NFAS and DFAs we get that this cost is superpolynomial, not too far from $F(n)$.
- This is proved by observing how a SVFA can be obtained from two complementary NFAs.

Self-verifying automata (SVFAs)

SVFAs characterize the class of regular languages.
Each n-state SVFA can be converted into an equivalent DFA with $O\left(3^{n / 3}\right) \approx O\left(1.45^{n}\right)$ states. This cost is tight, for an input alphabet of at least two letters. [Jirásková \& Pighizzini 2009]

What about the tight cost in the unary case?

- It must be strictly smaller than $F(n)$, the cost of the conversion of unary NFAs into DFAs. [J\&P 2009]
- As a consequence of the gap between complementary unary NFAS and DFAs we get that this cost is superpolynomial, not too far from $F(n)$.
- This is proved by observing how a SVFA can be obtained from two complementary NFAs.

Let A^{+}and A^{-}be two complementary NFAs.
We can build an equivalent SVFA A as the "union" of A^{+}and A^{-}, using a new initial state:

Let A^{+}and A^{-}be two complementary NFAs.
We can build an equivalent SVFA A as the "union" of A^{+}and A^{-}, using a new initial state:

Let A^{+}and A^{-}be two complementary NFAs.
We can build an equivalent SVFA A as the "union" of A^{+}and A^{-}, using a new initial state:

However, if A^{+}and A^{-}have the same transition graph we can do better...

From our witness NFAs to SVFAs

From our witness NFAs to SVFAs

From our witness NFAs to SVFAs

Same size!

Conclusion

We proved that the following gaps are superpolynomial, even for unary cyclic languages:

- between the total size of two NFAs accepting one language and its complement and the size of the corresponding DFA,
- between the sizes of SVFAs and DFAs.

The witness nfas A^{+}and A^{-}we used are unambiguous. Hence, also the following gaps are superpolynomial for unary cyclic languages:

- between the sizes of unambiguous NFAs and DFAs,
- between the sizes of unambiguous SVFAs and DFAs.

The superpolynomial function in all these gaps is $e^{\Omega\left(\sqrt[3]{N} \cdot n^{2} N\right)}$ We strongly believe that for unary languages these gaps cannot be significantly improved.

Conclusion

We proved that the following gaps are superpolynomial, even for unary cyclic languages:

- between the total size of two NFAs accepting one language and its complement and the size of the corresponding DFA,
- between the sizes of SVFAs and DFAs.

> The witness nFAs A^{+}and A^{-}we used are unambiguous.
> Hence, also the following gaps are superpolynomial for unary cyclic languages:
> - between the sizes of unambiguous NFAs and DFAS,
> - between the sizes of unambiguous SVFAs and DFAs.

The superpolynomial function in all these gaps is $e^{\Omega\left(\sqrt[3]{N} \cdot \ln ^{2} N\right)}$. We strongly believe that for unary languages these gaps cannot be significantly improved.

Conclusion

We proved that the following gaps are superpolynomial, even for unary cyclic languages:

- between the total size of two NFAs accepting one language and its complement and the size of the corresponding DFA,
- between the sizes of SVFAs and DFAs.

The witness nfas A^{+}and A^{-}we used are unambiguous.
Hence, also the following gaps are superpolynomial for unary cyclic
languages:

- between the sizes of unambiguous NFAs and DFAs,
- between the sizes of unambiguous SVFAs and DFAs.

We strongly believe that for unary languages these gaps cannot be
significantly improved.

Conclusion

We proved that the following gaps are superpolynomial, even for unary cyclic languages:

- between the total size of two NFAs accepting one language and its complement and the size of the corresponding DFA,
- between the sizes of SVFAs and DFAs.

The witness nfas A^{+}and A^{-}we used are unambiguous. Hence, also the following gaps are superpolynomial for unary cyclic languages:

- between the sizes of unambiguous NFAs and DFAs,
- between the sizes of unambiguous SVFAs and DFAs.

> The superpolynomial function in all these gaps is $e^{\Omega\left(\sqrt[3]{N} \cdot \ln ^{2} N\right)}$ We strongly believe that for unary languages these gaps cannot be significantly improved.

Conclusion

We proved that the following gaps are superpolynomial, even for unary cyclic languages:

- between the total size of two NFAs accepting one language and its complement and the size of the corresponding DFA,
- between the sizes of SVFAs and DFAs.

The witness nfas A^{+}and A^{-}we used are unambiguous. Hence, also the following gaps are superpolynomial for unary cyclic languages:

- between the sizes of unambiguous NFAs and DFAs,
- between the sizes of unambiguous SVFAs and DFAs.

The superpolynomial function in all these gaps is $e^{\Omega\left(\sqrt[3]{N \cdot \ln ^{2} N}\right)}$.
We strongly believe that for unary languages these gaps cannot be significantly improved.

