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Machine model

i n p u t B B. . . . . .

6
� -

Finite state control
Semi-infinite tape which contains, at the beginning of the
computation:

the input string, on its part of the tape
the blank symbol, in the remaining squares

According to the transition function at each step the
machine:

changes its internal state
writes a nonblank symbol on the scanned tape square
moves the head either to the left, or to the right, or keeps it
on the same square

In accepting and rejecting states the computation stops.
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Machine model

All the machines we consider in the following are one-tape
off-line

dTM means one-tape off-line deterministic Turing machine

nTM means one-tape off-line nondeterministic Turing
machine
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Crossing sequences

a a b a b b�	�
 �	�
 computation C

boundary b

q1

q2

q3

q4

q5

The crossing sequence of a computation C at a boundary b
between two tape squares is the sequence of the states
(q1, . . . , qk ) s.t. qi is the state when the boundary b is crossed
for the i th time.
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Crossing sequences: compatibility

a�	�
 �	�


q1

q2

q3

q4

q5

p1

p2

p3

Given two finite crossing sequences (q1, . . . , qk ) and
(p1, . . . , ph), it is possible to verify whether or not they are
compatible with respect to an input symbol a,
i.e., (q1, . . . , qk ) and (p1, . . . , ph) can be, in some computation,
the crossing sequence at the left boundary and at the right
boundary of a tape square which initially contains the symbol a.
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Crossing sequences: “cut–and–paste”

Given:

u v�	�
 �	�


q1

q2

q3

q4

q5

u′ v ′�	�
 �	�


q1

q2

q3

q4

q5

� -same crossing
sequence
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Complexity measures

Let C be a computation of a TM. We consider:

The time t(C), namely the number of moves in C.
The length of the crossing sequences c(C), namely the
maximal length of the crossing sequences defined by C.

nTMs can have many different computations for a same input
string

How to define
t(x) and c(x) for an input x and,
t(n) and c(n) for an input length n?
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Complexity measures: strong vs. weak measures

Let r ∈ {t , c} (time or length of crossing sequences)

strong measure: costs of all computations on x

r(x) = max{r(C) | C is a computation on x}

weak measure: minimum cost of accepting x

r(x) =

{
min{r(C) | C is accepting on x} if x ∈ L
0 otherwise

accept measure: costs of all accepting computations on x

r(x) =

{
max{r(C) | C is accepting on x} if x ∈ L
0 otherwise

r(n) = max{r(x) | x ∈ Σ∗, |x | = n}
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One-tape Off-Line TMs

Problem:

Find tight lower bounds for

the minimum amount of time t(n)

the length of crossing sequences c(n)

for nonregular language recognition.
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One-Tape Off-Line TMs: Simple bounds

For the length of the crossing sequences, the following result
can be easily proved:

Theorem
If L is accepted by a nTM such that c(n) = O(1), under the
weak measure, then L is regular.

Idea of the proof:
Let K be such that c(n) ≤ K .
Define a nfa A accepting L s.t.:

the states of A are the crossing sequences of length at
most K
the transition function is defined according to the
“compatibility” between crossing sequences
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One-Tape Off-Line TMs: Simple bounds

For the time, the following result can be easily proved:

Theorem
If L is accepted by a nTM such that t(n) = o(n), under the weak
measure, then t(n) = O(1) and L is regular.

Idea of the proof:
Let n0 s.t. t(n) < n, for each n ≥ n0.
Given x ∈ L and |x | ≥ n0, there is a computation C that
accepts x just reading at most the first t(x) symbols of x .
C should accept the prefix x ′ of x of length t(x).
We can prove that |x ′| < n0

Hence, the membership to L can be decided just testing an
input prefix of length at most n0
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One-Tape Off-Line TMs: Simple bounds

Does it is possible to improve the lower bounds on c(n)
and t(n) for nonregular language recognition given in the

previous results?

Different bounds have found depending
on the measure (strong, accept, weak)
on the kind of machine (deterministic, nondeterministic)
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Deterministic machines (strong measure)

Hennie (1965) proved that
one-tape off-line deterministic machines working

in linear time accept regular languages.
Furthermore, in order to accept nonregular languages

c(n) must grow at least as log n.

Trakhtenbrot (1964) and Hartmanis (1968), independently,
got a better time lower bound:

in order to recognize nonregular languages the time t(n)
must grow at least as n log n.

This is optimal because there are languages matching this
bound.
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Nondeterministic machines

Wagner and Wechsung (1986) gave an example of
nonregular language accepted by a nondeterministic
machine in time o(n log n)

Michel (1991) showed that
there exists a nonregular language accepted in linear time

by a nondeterministic machine
However, both there results refer to the weak measure

For the strong measure, Tadaki, Yamakami and Lin (2004)
proved the that the n log n time bound for nonregular
language recognition holds even in the case of
nondeterministic machines

We recently extended the last result to the accept measure.
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Lower bounds for the accept measure

For the accept measure we proved [Pighizzini, 2009]:

Let M be a nTM accepting a language L using
crossing sequences of length bounded by c(n)

time t(n)

under the accept measure. Then:
If c(n) = o(log n) then c(n) = O(1) and then L is regular

If t(n) = o(n log n) then:

t(n) = O(n)

c(n) = O(1)

L is regular
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Lower bounds for the accept measure

The proof uses counting arguments based on the following
lemma:

Lemma
Given

an integer k
an input string w accepted by a computation C with
c(C) = k.

If a same crossing sequence occurs in C at three different
boundaries of the input zone of the tape, then there is another
string w ′ s.t.

|w | < |w ′|
w ′ is accepted by a computation C′ with c(C′) = k
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Sketch of the proof

w︷ ︸︸ ︷
x y z t

b1 b2 b3

@@I @@I ���
same crossing

sequence
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Sketch of the proof
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x y z t

b1 b2 b3b

case b ≥ b2

� longest
crossing sequence
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� longest
crossing sequence
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Sketch of the proof

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b ≥ b2

� longest
crossing sequence

⇒
cut y

w ′︷ ︸︸ ︷
x z t
b1 ≡ b2 b3b

Giovanni Pighizzini Nondeterministic One-Tape Off-Line TMs



Sketch of the proof

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b < b2

� longest
crossing sequence
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Sketch of the proof
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x y z t

b1 b2 b3b

case b < b2

� longest
crossing sequence

⇒
cut z
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Sketch of the proof

w︷ ︸︸ ︷
x y z t

b1 b2 b3b

case b < b2

� longest
crossing sequence

⇒
cut z

w ′︷ ︸︸ ︷
x y t

b1 b2 ≡ b3b
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The weak measure

Does it is possible to extend the lower bound for
the accept measure to the weak one?

By the above mentioned result of Michel (1991), for the
time the answer is negative
For the length of the crossing sequences a log log n lower
bound has been proved [Pighizzini, 2009]
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c(n) grows at least as log log n, weak measure

Sketch of the proof

L := language accepted by the given machine M
q := number of states of M
for n ≥ 1:
Nn := nfa whose states are the crossing sequences of
length ≤ c(n) and whose transitions are defined according
to the “compatibility” relation
Nn agrees with M on strings of length ≤ n
An := dfa equivalent to Nn, it has ≤ 2qc(n)+1

states
By a result of Karp (1967), if L is not regular, then the
number of the states of An must be ≥ n+3

2 , i.o.

Hence 2qc(n)+1 ≥ n+3
2 , i.o., implying that

c(n) ≥ d log log n

for some constant d and infinitely many n.
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n
log n

Trakhtenbrot (1964) and Hartmanis (1968)
Hennie (1965) for c(n)
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n
log n

n log n
log n

Tadaki, Yamakami, and Lin (2004)
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n
log n

n log n n log n
log n log n

Pighizzini (2009)
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n
log n log n

n log n n log n
log n log n

Consequence of accept nTM
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n

n log n n log n
log n log n

For dTM, accept and weak is the same
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n

n log n n log n n
log n log n log log n

t(n): simple bound
c(n): Pighizzini (2009)
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Summary of the lower bounds

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n

n log n n log n n
log n log n log log n
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Optimality of the bounds

Consider the following unary language (Hartmanis, 1968)

L = {a2m | m ≥ 0}

We can build a dTM M accepting L which works as follows:
At the beginning all the input cells are “unmarked”
M sweeps form left to right over the input segment and
marks off the 1st, 3th, 5th, etc. unmarked squares
M repeats the previous step until the rightmost square of
the input segment becomes marked
M accepts if and only if all the input segment is marked.
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X a X a X a X a X a X a
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We can build a dTM M accepting L which works as follows:
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Optimality of the bounds

Consider the following unary language (Hartmanis, 1968)

L = {a2m | m ≥ 0}

We can build a dTM M accepting L which works as follows:
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M sweeps form left to right over the input segment and
marks off the 1st, 3th, 5th, etc. unmarked squares
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M accepts if and only if all the input segment is marked.
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Optimality of the bounds

Consider the following unary language (Hartmanis, 1968)

L = {a2m | m ≥ 0}

We can build a dTM M accepting L which works as follows:
At the beginning all the input cells are “unmarked”
M sweeps form left to right over the input segment and
marks off the 1st, 3th, 5th, etc. unmarked squares
M repeats the previous step until the rightmost square of
the input segment becomes marked
M accepts if and only if all the input segment is marked.

X X X X X X X X accept!
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Complexity

On input an, the machine M makes O(log n) sweeps of the
part of the tape which contains the input. Hence:

c(n) = O(log n) and t(n) = O(n log n).

M is deterministic and the previous bounds hold for
accepting and rejecting computations: strong measure.

This gives the optimality of all the lower bounds in the
table, with the only exception of those for nTMs, under the
weak measure:

dTM t(n)
c(n)

nTM t(n)
c(n)

strong accept weak
n log n n log n n log n
log n log n log n

n log n n log n n
log n log n log log n

The optimality was proved by using a unary language.
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nTMs and weak measure

What about the bounds for the weak measure for nTMs?

There are nonregular languages accepted in time O(n).

Hence, in this case there is no a “gap” between regular
and nonregular languages.

The example provided by Michel (1991) strongly relies on
the use of an input alphabet with more than one symbol.

Up to now, we do not know any example of unary
nonregular language accepted in weak time O(n).

We believe that such a language does not exists:
Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular.

We now show an example of unary nonregular language
accepted by a nTM in weak time O(n log log n).
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We believe that such a language does not exists:
Conjecture: If a nTM accepts a unary language L in time
o(n log log n) under the weak measure then L is regular.

We now show an example of unary nonregular language
accepted by a nTM in weak time O(n log log n).
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Basic techniques

We can consider a tape divided in a fixed number of tracks.

The input is written on the first track.

i n p u t s t r i n g
m e m o r y s p a c e
m e m o r y s p a c e

Track 1

Track 2

Track 3

Giovanni Pighizzini Nondeterministic One-Tape Off-Line TMs



Basic techniques

How to count input symbols

i n p u t s t r i n g
1 0 1

Track 1

Track 2

Track 3

6head

The counter is kept on track 2, starting from the position
scanned by the tape head
When the head must be moved to the right, counting one
more input position, the counter is incremented and shifted
to the right
This is done in O(log j) steps (where j is the value of the
counter) using track 3 as an auxiliary variable.
In this way, k tape positions can be counted in O(k log k)
moves.
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Basic techniques

How to compute n mod k
(n = input length, k = an integer written somewhere)

We adapt the previous technique:

The counter on track 2 is reset each time it becomes equal
to k .

In this way, track 2 will finally contain n MOD k .

To implement the comparison between the counter and k :

The value of k is kept on one extra track (track 4)
Its representation is shifted to the right, when the input
head is moved to the right to count one more position, in
such a way that the counter and k are always on the same
tape segment.

The total time is O(n log k)
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A unary language accepted in weak time O(n log log n)

For each integer n let

q(n) := the smallest integer that does not divide n

We consider the language

L = {an | q(n) is not a power of 2}

L can be recognized using the following nondeterministic
algorithm (Mereghetti, 2008):

input an

guess an integer s, s > 1
guess an integer t , 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject
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Implementation of the algorithm

input an

guess an integer s, s > 1
guess an integer t , 2s < t < 2s+1

if n mod 2s = 0 and n mod t 6= 0 then accept
else reject

Implementation and complexity:

Two extra tracks (track 5 and 6) are used to guess 2s and t
(linear time)
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A unary language accepted in weak time O(n log log n)

Hence, we have proved the following:

Theorem ([Pighizzini, 2009])
The language L is accepted by a nTM with

t(n) = O(n log log n)

c(n) = O(log log n)

under the weak measure
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More on L

The language L and its complement have been widely studied
in the literature. These are some results:

Lc is accepted by a dTM with a separate worktape, using
the minimum amount of space O(log log n)
[Alt and Mehlhron, 1975]

The same space complexity can be achieved using the
smallest possible number of input head reversals
O( log n

log log n ) [Bertoni, Mereghetti, and Pighizzini, 1994]

For L we can even do better: L is accepted by a one-way
nTM with a separate worktape, using the minimum amount
of space O(log log n), under the weak measure
[Mereghetti, 2008]

Hence, L seems to be a good example of nonregular language
with “low” complexity.
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Final remarks

We considered the “border” between regular and nonregular
languages, wrt to the time t(n) and the length of crossing
sequences c(n).

Similar investigations can be (or have been) done (even for
different classes of languages) wrt other resources:

Space (e.g., [Sziepietowski, 1994], [Mereghetti, 2008])
Head reversals
(for the input head [Bertoni, Mereghetti, Pighizzini, 1994])
Return complexity or Active visit
[Wechsung 1975 – Chytil, 1976]

Dual return complexity [Hibbard, 1968]

...
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Final remarks

We used of tape tracks, namely large alphabets, big-Oh
notation, etc.

It is interesting to investigate what happens when we put
stronger restrictions on the resources.

An interesting result in this line has been recently proved by
Hemaspaandra, Mukherji and Tantau (2005):

Context-free languages are accepted by Turing
machines with absolutely no space overhead

The work space of the machine is:
the finite state control
the space that initially contains the input, with the
restriction that only a binary alphabet can be used on it.
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