Converting Self-Verifying Automata into Deterministic Automata

Galina Jirásková ${ }^{1}$ Giovanni Pighizzini ${ }^{2}$
${ }^{1}$ Mathematical Institute
Slovak Academy of Sciences
Košice, Slovakia
${ }^{2}$ Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano
Milano, Italy

LATA 2009 - Tarragona - April 7th, 2009

Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata, Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

- accepting states ("yes")
- rejecting states ("no")
- neutral states ("I do not know")

For each input word x the following conditions must be satisfyied:

- At least one computation on input x ends either in an accepting or in a rejecting state
- If a computation on x ends in an accepting state then there are no computations on x ending in rejecting states

Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata, Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

- accepting states ("yes")
- rejecting states ("no")
- neutral states ("I do not know")

For each input word x the following conditions must be satisfyied:

- At least one computation on input x ends either in an accepting or in a rejecting state
- If a computation on x ends in an accepting state then there are no computations on x ending in rejecting states

Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata, Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

- accepting states ("yes")
- rejecting states ("no")
- neutral states ("I do not know")

For each input word x the following conditions must be satisfyied:

- At least one computation on input x ends either in an accepting or in a rejecting state
- If a computation on x ends in an accepting state then there are no computations on x ending in rejecting states

Self-verifying machines

Standard machines (e.g. finite automata, pushdown automata, Turing machines) with nondeterministic transitions

The state set is partitioned in three groups:

- accepting states ("yes")
- rejecting states ("no")
- neutral states ("I do not know")

For each input word x the following conditions must be satisfyied:

- At least one computation on input x ends either in an accepting or in a rejecting state
- If a computation on x ends in an accepting state then there are no computations on x ending in rejecting states

Self-verifying machines

Some references:

- Ďuriš, Hromkovič, Rolim, and Schnitger (STACS 1997) Definition of the model in connection with the study of Las Vegas automata.
- Hromkovič and Schnitger (Information and Comp. 2001) Hromkovič and Schnitger (SIAM J. Comp. 2003) Further investigations in connection with Las Vegas computations and also per se.
- Assent and Seibert (RAIRO-ITA 2007) Simulation of self-verifying automata by deterministic automata.

Basic properties

- Trivial complementation

Basic properties

- Trivial complementation
- Given nondeterministic machines M^{\prime} and $M^{\prime \prime}$ for L and L^{c}, we can build a self-verifying machine M for L as the "union" of M^{\prime} and $M^{\prime \prime}$, with a new initial state:

Basic properties

- Trivial complementation
- Given nondeterministic machines M^{\prime} and $M^{\prime \prime}$ for L and L^{c}, we can build a self-verifying machine M for L as the "union" of M^{\prime} and $M^{\prime \prime}$, with a new initial state:

- Given a self-verifying machine for a language L we can easily obtain nondeterministic machines for L and for L^{c}

Basic properties

- Trivial complementation
- Given nondeterministic machines M^{\prime} and $M^{\prime \prime}$ for L and L^{c}, we can build a self-verifying machine M for L as the "union" of M^{\prime} and $M^{\prime \prime}$, with a new initial state:

- Given a self-verifying machine for a language L we can easily obtain nondeterministic machines for L and for L^{c}

Basic properties

- Trivial complementation
- Given nondeterministic machines M^{\prime} and $M^{\prime \prime}$ for L and L^{c}, we can build a self-verifying machine M for L as the "union" of M^{\prime} and $M^{\prime \prime}$, with a new initial state:

- Given a self-verifying machine for a language L we can easily obtain nondeterministic machines for L and for L^{c}

Self-verifying automata (svfa): definition

$A=\left(Q, \Sigma, \delta, q_{0}, F^{a}, F^{r}\right)$ where:

- Q is the finite set of states
- Σ is the input alphabet
- $q_{0} \in Q$ is the initial state
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function

Self-verifying automata (svfa): definition

$A=\left(Q, \Sigma, \delta, q_{0}, F^{a}, F^{r}\right)$ where:

- Q is the finite set of states
- Σ is the input alphabet
- $q_{0} \in Q$ is the initial state
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function
- $F^{a} \subseteq Q$ is the set of accepting states

Self-verifying automata (svfa): definition

$A=\left(Q, \Sigma, \delta, q_{0}, F^{a}, F^{r}\right)$ where:

- Q is the finite set of states
- Σ is the input alphabet
- $q_{0} \in Q$ is the initial state
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function
- $F^{a} \subseteq Q$ is the set of accepting states
- $F^{r} \subseteq Q$ it the set of rejecting states, s.t. $F^{a} \cap F^{r}=\emptyset$

Self-verifying automata (svfa): definition

$A=\left(Q, \Sigma, \delta, q_{0}, F^{a}, F^{r}\right)$ where:

- Q is the finite set of states
- Σ is the input alphabet
- $q_{0} \in Q$ is the initial state
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function
- $F^{a} \subseteq Q$ is the set of accepting states
- $F^{r} \subseteq Q$ it the set of rejecting states, s.t. $F^{a} \cap F^{r}=\emptyset$
- $Q-\left(F^{a} \cup F^{r}\right)$ is the set of neutral states

Self-verifying automata (svfa): definition

$A=\left(Q, \Sigma, \delta, q_{0}, F^{a}, F^{r}\right)$ where:

- Q is the finite set of states
- Σ is the input alphabet
- $q_{0} \in Q$ is the initial state
- $\delta: Q \times \Sigma \rightarrow 2^{Q}$ is the transition function
- $F^{a} \subseteq Q$ is the set of accepting states
- $F^{r} \subseteq Q$ it the set of rejecting states, s.t. $F^{a} \cap F^{r}=\emptyset$
- $Q-\left(F^{a} \cup F^{r}\right)$ is the set of neutral states

Self-verifying automata (svfa): definition

The following conditions must be satisfied:

- For each $w \in \Sigma^{*}: \delta\left(q_{0}, w\right) \cap\left(F^{a} \cup F^{r}\right) \neq \emptyset$
namely, for each string there exists at least one accepting computation or one rejecting computation

Self-verifying automata (svfa): definition

The following conditions must be satisfied:

- For each $w \in \Sigma^{*}: \delta\left(q_{0}, w\right) \cap\left(F^{a} \cup F^{r}\right) \neq \emptyset$
namely, for each string there exists at least one accepting computation or one rejecting computation
- There are no strings $w \in \Sigma^{*}$ s.t. $\delta\left(q_{0}, w\right) \cap F^{a} \neq \emptyset$ and
namely, the automaton cannot give contradictory answers

Self-verifying automata (svfa): definition

The following conditions must be satisfied:

- For each $w \in \Sigma^{*}: \delta\left(q_{0}, w\right) \cap\left(F^{a} \cup F^{r}\right) \neq \emptyset$ namely, for each string there exists at least one accepting computation or one rejecting computation
- There are no strings $w \in \Sigma^{*}$ s.t. $\delta\left(q_{0}, w\right) \cap F^{a} \neq \emptyset$ and $\delta\left(q_{0}, w\right) \cap F^{r} \neq \emptyset$
namely, the automaton cannot give contradictory answers

Languages of svfa's

We associate with an svfa A the following languages:

- The set of strings accepted by A :

Languages of svfa's

We associate with an svfa A the following languages:

- The set of strings accepted by A :

$$
L^{a}(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F^{a} \neq \emptyset\right\}
$$

- The set of strings rejected by A :

Languages of svfa's

We associate with an svfa A the following languages:

- The set of strings accepted by A :

$$
L^{a}(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F^{a} \neq \emptyset\right\}
$$

- The set of strings rejected by A :

$$
L^{r}(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F^{r} \neq \emptyset\right\}
$$

By the previous conditions $L^{r}(A)=\Sigma^{*}-L^{a}(A)$.

Languages of svfa's

We associate with an svfa A the following languages:

- The set of strings accepted by A :

$$
L^{a}(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F^{a} \neq \emptyset\right\}
$$

- The set of strings rejected by A :

$$
L^{r}(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F^{r} \neq \emptyset\right\}
$$

By the previous conditions $L^{r}(A)=\Sigma^{*}-L^{a}(A)$.
The language accepted by A is defined as $L^{a}(A)$.

Languages of svfa's

We associate with an svfa A the following languages:

- The set of strings accepted by A :

$$
L^{a}(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F^{a} \neq \emptyset\right\}
$$

- The set of strings rejected by A :

$$
L^{r}(A)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \cap F^{r} \neq \emptyset\right\}
$$

By the previous conditions $L^{r}(A)=\Sigma^{*}-L^{a}(A)$.
The language accepted by A is defined as $L^{a}(A)$.

Questions about svfa's

First question

What is the class of languages accepted by svfa's?
The answer to this question is easy:

- Each svfa is a nondeterministic automaton
- Each deterministic automaton is also an svfa

Questions about svfa's

First question
What is the class of languages accepted by svfa's?
The answer to this question is easy:

- Each svfa is a nondeterministic automaton
- Each deterministic automaton is also an svfa

Hence:
Svfa's characterize the class of regular languages
Thus, each svfa can be converted into an equivalent dfa,

Questions about svfa's

First question
What is the class of languages accepted by svfa's?
The answer to this question is easy:

- Each svfa is a nondeterministic automaton
- Each deterministic automaton is also an svfa

Hence:
Svfa's characterize the class of regular languages
Thus, each svfa can be converted into an equivalent dfa.

Questions about svfa's

Second question
How much it costs, in terms of states, the conversion of an n-state svfa into an equivalent dfa?

Questions about svfa's

Second question
How much it costs, in terms of states, the conversion of an n-state svfa into an equivalent dfa?

- Classical subset construction: upper bound 2^{n}
- It is possible to do better: Assent and Seibert (2007) reduced the upper bound to $O\left(\frac{2^{n}}{\sqrt{n}}\right)$, leaving open the optimality

Questions about svfa's

Second question
How much it costs, in terms of states, the conversion of an n-state svfa into an equivalent dfa?

- Classical subset construction: upper bound 2^{n}
- It is possible to do better: Assent and Seibert (2007) reduced the upper bound to $O\left(\frac{2^{n}}{\sqrt{n}}\right)$, leaving open the optimality
In this work we further investigate this problem:
- We reduce the upper bound to a function $g(n)$ which grows like $3^{\frac{n}{3}}$

Questions about svfa's

Second question
How much it costs, in terms of states, the conversion of an n-state svfa into an equivalent dfa?

- Classical subset construction: upper bound 2^{n}
- It is possible to do better: Assent and Seibert (2007) reduced the upper bound to $O\left(\frac{2^{n}}{\sqrt{n}}\right)$, leaving open the optimality
In this work we further investigate this problem:
- We reduce the upper bound to a function $g(n)$ which grows like $3^{\frac{n}{3}}$
- We prove that our upper bound $g(n)$ is tight

Questions about svfa's

Second question
How much it costs, in terms of states, the conversion of an n-state svfa into an equivalent dfa?

- Classical subset construction: upper bound 2^{n}
- It is possible to do better: Assent and Seibert (2007) reduced the upper bound to $O\left(\frac{2^{n}}{\sqrt{n}}\right)$, leaving open the optimality
In this work we further investigate this problem:
- We reduce the upper bound to a function $g(n)$ which grows like $3^{\frac{n}{3}}$
- We prove that our upper bound $g(n)$ is tight

Conversion of svfa's into dfa's

Let A be an svfa

- Two states q, p of A are said to be compatible iff starting from them and reading a same string x it is not possible to obtain contradictory answers

Conversion of svfa's into dfa's

Let A be an svfa

- Two states q, p of A are said to be compatible iff starting from them and reading a same string x it is not possible to obtain contradictory answers

Conversion of svfa's into dfa's

Let A be an svfa

- Two states q, p of A are said to be compatible iff starting from them and reading a same string x it is not possible to obtain contradictory answers

Conversion of svfa's into dfa's

Let A be an svfa

- Two states q, p of A are said to be compatible iff starting from them and reading a same string x it is not possible to obtain contradictory answers

Conversion of svfa's into dfa's

Let A be an svfa

- Two states q, p of A are said to be compatible iff starting from them and reading a same string x it is not possible to obtain contradictory answers

Conversion of svfa's into dfa's

Let A be an svfa

- Two states q, p of A are said to be compatible iff starting from them and reading a same string x it is not possible to obtain contradictory answers

Conversion of svfa's into dfa's

Let A be an svfa

- Two states q, p of A are said to be compatible iff starting from them and reading a same string x it is not possible to obtain contradictory answers

The subset automaton $A_{\text {sub }}$

- Using the standard subset construction, from the given svfa A we build a dfa
- Using the standard subset construction, from the given svfa A we build a dfa
- Let $A_{\text {sub }}$ such a dfa, restricted to its reachable states
- Using the standard subset construction, from the given svfa A we build a dfa
- Let $A_{\text {sub }}$ such a dfa, restricted to its reachable states
- We study the properties of $A_{\text {sub }}$
- Using the standard subset construction, from the given svfa A we build a dfa
- Let $A_{\text {sub }}$ such a dfa, restricted to its reachable states
- We study the properties of $A_{\text {sub }}$
- Our goal is to discover which states of $A_{\text {sub }}$ are equivalent
- Using the standard subset construction, from the given svfa A we build a dfa
- Let $A_{\text {sub }}$ such a dfa, restricted to its reachable states
- We study the properties of $A_{\text {sub }}$
- Our goal is to discover which states of $A_{\text {sub }}$ are equivalent

Properties of the subset automaton

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

Properties of the subset automaton

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

Each two states $q, p \in \alpha$ are compatible

If $q, p \in \alpha$ are not compatible then:

Properties of the subset automaton

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

Each two states $q, p \in \alpha$ are compatible

Proof
If $q, p \in \alpha$ are not compatible then:

Given a string y s.t. α is reached on y, the original svfa on $y x$ should give contradictory answers!

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

Each two states $q, p \in \alpha$ are compatible

Proof
If $q, p \in \alpha$ are not compatible then:

Given a string y s.t. α is reached on y, the original svfa on $y x$ should give contradictory answers!

Properties of the subset automaton

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

Properties of the subset automaton

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

$$
\begin{aligned}
& \text { For each } x \in \Sigma^{*} \text { there exists a state } q \in \alpha \text { s.t. } \\
& \qquad \delta(q, x) \cap\left(F^{a} \cup F^{r}\right) \neq \emptyset
\end{aligned}
$$

Proof

If starting from each $q \in \alpha$, the answer on x is "I don't know"

Properties of the subset automaton

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

$$
\begin{aligned}
& \text { For each } x \in \Sigma^{*} \text { there exists a state } q \in \alpha \text { s.t. } \\
& \qquad \delta(q, x) \cap\left(F^{a} \cup F^{r}\right) \neq \emptyset
\end{aligned}
$$

Proof

If starting from each $q \in \alpha$, the answer on x is "I don't know":

Given a string y s.t. α is reached on y, the original svfa on $y x$ cannot give any answer!

Let α be a state of the subset automaton $A_{\text {sub }}$. Then:

$$
\begin{aligned}
& \text { For each } x \in \Sigma^{*} \text { there exists a state } q \in \alpha \text { s.t. } \\
& \qquad \delta(q, x) \cap\left(F^{a} \cup F^{r}\right) \neq \emptyset
\end{aligned}
$$

Proof

If starting from each $q \in \alpha$, the answer on x is "I don't know":

Given a string y s.t. α is reached on y, the original svfa on $y x$ cannot give any answer!

Compatibility graph

We define the following compatibility graph G, associated with the given svfa A :

Compatibility graph

We define the following compatibility graph G, associated with the given svfa A :

- The nodes of G are the states of A
- Two states q, p are connected by an edge iff q and p are compatible

Compatibility graph

We define the following compatibility graph G, associated with the given svfa A :

- The nodes of G are the states of A
- Two states q, p are connected by an edge iff q and p are compatible

Hence:
each state of $A_{\text {sub }}$ represents a clique of G

Compatibility graph

We define the following compatibility graph G, associated with the given svfa A :

- The nodes of G are the states of A
- Two states q, p are connected by an edge iff q and p are compatible

Hence:
each state of $A_{\text {sub }}$ represents a clique of G

Properties of the subset automaton

Let $\alpha, \beta \subseteq Q$ two states of $A_{\text {sub }}$

Properties of the subset automaton

Let $\alpha, \beta \subseteq Q$ two states of $A_{\text {sub }}$
If $\alpha \cup \beta$ is a clique of G then α and β are equivalent

Proof
By contradiction, let x be a
string distinguishing α and β :

subset automaton $A_{\text {sub }}$

Properties of the subset automaton

Let $\alpha, \beta \subseteq Q$ two states of $A_{\text {sub }}$
If $\alpha \cup \beta$ is a clique of G then α and β are equivalent
Proof
By contradiction, let x be a string distinguishing α and β :

subset automaton $A_{\text {sub }}$

> This should imply that q and p are not compatible. Hence, $\alpha \cup \beta$ cannot be a clique of G !

Properties of the subset automaton

Let $\alpha, \beta \subseteq Q$ two states of $A_{\text {sub }}$
If $\alpha \cup \beta$ is a clique of G then α and β are equivalent
Proof
By contradiction, let x be a Then $\exists \boldsymbol{q} \in \alpha, \boldsymbol{p} \in \beta$ s.t.: string distinguishing α and β :

subset automaton $A_{\text {sub }}$

This should imply that q and p are not compatible. Hence, $\alpha \cup \beta$ cannot be a clique of G !

Properties of the subset automaton

Let $\alpha, \beta \subseteq Q$ two states of $A_{\text {sub }}$
If $\alpha \cup \beta$ is a clique of G then α and β are equivalent
Proof
By contradiction, let x be a string distinguishing α and β :

$$
\text { Then } \exists q \in \alpha, p \in \beta \text { s.t.: }
$$

This should imply that q and p are not compatible. Hence, $\alpha \cup \beta$ cannot be a clique of G !

Subset automatom

By the previous properties:

- Each state of $A_{\text {sub }}$ corresponds to a clique of the compatibility graph G
- If the union of two states α, β of $A_{\text {sub }}$ is still a clique then α and β are equivalent

Subset automatom

By the previous properties:

- Each state of $A_{\text {sub }}$ corresponds to a clique of the compatibility graph G
- If the union of two states α, β of $A_{\text {sub }}$ is still a clique then α and β are equivalent

Hence,
We can reduce the size of $A_{\text {sub }}$ by considering exactly one state for

In other words, the number of the states of the minimal dfa
equivalent to A is bounded by the number of maximal cliques of G

By the previous properties:

- Each state of $A_{\text {sub }}$ corresponds to a clique of the compatibility graph G
- If the union of two states α, β of $A_{\text {sub }}$ is still a clique then α and β are equivalent

Hence,
We can reduce the size of $A_{\text {sub }}$ by considering exactly one state for each maximal clique of G

In other words, the number of the states of the minimal dfa equivalent to A is bounded by the number of maximal cliques of G

Cliques in graphs

How many maximal cliques can a graph with n nodes have?
This question was answered by Moon and Moser (1965).
They proved the following exact bound $f(n)$ for the maximum number of maximal cliques in a graph with n nodes:

$$
f(n)= \begin{cases}3\left\lfloor\frac{n}{3}\right\rfloor & \text { if } n \equiv 0(\bmod 3) \\ 4 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor-1} & \text { if } n \equiv 1(\bmod 3) \\ 2 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor} & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Cliques in graphs

How many maximal cliques can a graph with n nodes have?
This question was answered by Moon and Moser (1965).
They proved the following exact bound $f(n)$ for the maximum number of maximal cliques in a graph with n nodes:

$$
f(n)= \begin{cases}3\left\lfloor\frac{n}{3}\right\rfloor & \text { if } n \equiv 0(\bmod 3) \\ 4 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor-1} & \text { if } n \equiv 1(\bmod 3) \\ 2 \cdot 3^{\left\lfloor\frac{n}{3}\right\rfloor} & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that
Each n-state svfa's can be simulated by a dfa with at most $g(n)=1+f(n-1)$ states

Proof

- We proved that $A_{\text {sub }}$ can be reduced to a dfa with at most one state for each maximal clique of G

Notice that $g(n)=O\left(3^{\frac{n}{3}}\right)$

Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that
Each n-state svfa's can be simulated by a dfa with at most $g(n)=1+f(n-1)$ states

Proof

- We proved that $A_{\text {sub }}$ can be reduced to a dfa with at most one state for each maximal clique of G
- From the defintion, it follows that each two states which are compatible with q_{0} are compatible with each other

Notice that $g(n)=O\left(3^{\frac{n}{3}}\right)$

Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that
Each n-state svfa's can be simulated by a dfa with at most $g(n)=1+f(n-1)$ states

Proof

- We proved that $A_{\text {sub }}$ can be reduced to a dfa with at most one state for each maximal clique of G
- From the defintion, it follows that each two states which are compatible with q_{0} are compatible with each other
- Hence qo belongs only to one maximal clique

Notice that $g(n)=O\left(3^{\frac{n}{3}}\right)$

Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

> Each n-state svfa's can be simulated by a dfa with at most $g(n)=1+f(n-1)$ states

Proof

- We proved that $A_{\text {sub }}$ can be reduced to a dfa with at most one state for each maximal clique of G
- From the defintion, it follows that each two states which are compatible with q_{0} are compatible with each other
- Hence q_{0} belongs only to one maximal clique
- The other maximal cliques can involve at most the remaining $n-1$ states, hence they are at most $f(n-1)$

Notice that $g(n)=O\left(3^{\frac{n}{3}}\right)$

Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that

> Each n-state svfa's can be simulated by a dfa with at most $g(n)=1+f(n-1)$ states

Proof

- We proved that $A_{\text {sub }}$ can be reduced to a dfa with at most one state for each maximal clique of G
- From the defintion, it follows that each two states which are compatible with q_{0} are compatible with each other
- Hence q_{0} belongs only to one maximal clique
- The other maximal cliques can involve at most the remaining $n-1$ states, hence they are at most $f(n-1)$
- This gives the upper bound $g(n)=1+f(n-1)$

Notice that $g(n)=O\left(3^{\frac{n}{3}}\right)$

Conversion of svfa's into dfa's: upper bound

Using the result of Moon and Moser, we can prove that
Each n-state svfa's can be simulated by a dfa with at most $g(n)=1+f(n-1)$ states

Proof

- We proved that $A_{\text {sub }}$ can be reduced to a dfa with at most one state for each maximal clique of G
- From the defintion, it follows that each two states which are compatible with q_{0} are compatible with each other
- Hence q_{0} belongs only to one maximal clique
- The other maximal cliques can involve at most the remaining $n-1$ states, hence they are at most $f(n-1)$
- This gives the upper bound $g(n)=1+f(n-1)$

Notice that $g(n)=O\left(3^{\frac{n}{3}}\right)$

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Optimality

The upper bound $g(n)$ is tight: for each integer $n \geq 1$ we can show an example of n-state svfa A_{n} whose minimal equivalent dfa has exactly $g(n)$ states.

For $n=3 m+1, A_{n}$ is the following:

Properties of A_{n}

Properties of A_{n}

a

Properties of A_{n}

a

Properties of A_{n}

$a b$

Properties of A_{n}

$a b$

Properties of A_{n}

$a b a$

Properties of A_{n}

$a b a$

Properties of A_{n}

abaa

Properties of A_{n}

abaa

Properties of A_{n}

abaab

Properties of A_{n}

$a b a a b$

Properties of A_{n}

The reachable states of the subset automaton $A_{\text {sub }}$ are:

- $\left\{q_{0}\right\}$
- the 3^{m} subsets obtained by taking one state from each column in the "grid part" (hence A_{n} is an svfa!)

Properties of A_{n}

- We can verify that each two states of $A_{\text {sub }}$ are distinguishable

Properties of A_{n}

Summing up:

- The subset automaton $A_{\text {sub }}$ has exactly $g(n)=1+3^{\frac{n-1}{3}}$ states

Properties of A_{n}

Summing up:

- The subset automaton $A_{\text {sub }}$ has exactly $g(n)=1+3^{\frac{n-1}{3}}$ states - All these states are pairwise distinguishable

Properties of A_{n}

Summing up:

- The subset automaton $A_{\text {sub }}$ has exactly $g(n)=1+3^{\frac{n-1}{3}}$ states
- All these states are pairwise distinguishable
- Hence, it is the minimal dfa equivalent to A_{n}

Properties of A_{n}

Summing up:

- The subset automaton $A_{\text {sub }}$ has exactly $g(n)=1+3^{\frac{n-1}{3}}$ states
- All these states are pairwise distinguishable
- Hence, it is the minimal dfa equivalent to A_{n}
- The argument can be easily adapted, for the values of n which are not of the form $3 m+1$

Properties of A_{n}

Summing up:

- The subset automaton $A_{\text {sub }}$ has exactly $g(n)=1+3^{\frac{n-1}{3}}$ states
- All these states are pairwise distinguishable
- Hence, it is the minimal dfa equivalent to A_{n}
- The argument can be easily adapted, for the values of n which are not of the form $3 m+1$

Hence:
the exact cost for the conversion of n-state svfa's into equivalent

Properties of A_{n}

Summing up:

- The subset automaton $A_{\text {sub }}$ has exactly $g(n)=1+3^{\frac{n-1}{3}}$ states
- All these states are pairwise distinguishable
- Hence, it is the minimal dfa equivalent to A_{n}
- The argument can be easily adapted, for the values of n which are not of the form $3 m+1$

Hence:
the exact cost for the conversion of n-state svfa's into equivalent dfa's is:

$$
g(n)= \begin{cases}1+3^{\frac{n-1}{3}} & \text { if } n \equiv 1(\bmod 3) \text { and } n \geqslant 4 \\ 1+4 \cdot 3^{\frac{n-2}{3}-1} & \text { if } n \equiv 2(\bmod 3) \text { and } n \geqslant 5 \\ 1+2 \cdot 3^{\frac{n}{3}-1} & \text { if } n \equiv 0(\bmod 3) \text { and } n \geqslant 3 \\ n & \text { if } n \leqslant 2\end{cases}
$$

Svfa's with multiple initial states

What happens if we allow multiple initial states?

- All the initial states of A must be compatible each others

Svfa's with multiple initial states

What happens if we allow multiple initial states?

- All the initial states of A must be compatible each others
- The initial state of the minimal dfa is the maximal clique containing all of them

Svfa's with multiple initial states

What happens if we allow multiple initial states?

- All the initial states of A must be compatible each others
- The initial state of the minimal dfa is the maximal clique containing all of them
- This gives an upper bound $f(n)=g(n+1)-1$

Svfa's with multiple initial states

What happens if we allow multiple initial states?

- All the initial states of A must be compatible each others
- The initial state of the minimal dfa is the maximal clique containing all of them
- This gives an upper bound $f(n)=g(n+1)-1$
- The upper bound is optimal

Svfa's with multiple initial states

What happens if we allow multiple initial states?

- All the initial states of A must be compatible each others
- The initial state of the minimal dfa is the maximal clique containing all of them
- This gives an upper bound $f(n)=g(n+1)-1$
- The upper bound is optimal

What about the optimality in the unary case?

- We proved the optimality using automata over a binary alphabet

What about the optimality in the unary case?

- We proved the optimality using automata over a binary alphabet
- The cost of the conversion of unary nfa's into dfa's is $F(n)=e^{O(\sqrt{n \log n})}($ Chrobak, 1986)

What about the optimality in the unary case?

- We proved the optimality using automata over a binary alphabet
- The cost of the conversion of unary nfa's into dfa's is $F(n)=\mathrm{e}^{O(\sqrt{n \log n})}$ (Chrobak, 1986)
- $F(n)$ grows more slowly than $g(n)$. Hence $F(n)$ is a better upper bound for the conversion of svfa's into dfa's in the unary case

What about the optimality in the unary case?

- We proved the optimality using automata over a binary alphabet
- The cost of the conversion of unary nfa's into dfa's is $F(n)=\mathrm{e}^{O(\sqrt{n \log n})}$ (Chrobak, 1986)
- $F(n)$ grows more slowly than $g(n)$. Hence $F(n)$ is a better upper bound for the conversion of svfa's into dfa's in the unary case
- This upper bound is not optimal!

What about the optimality in the unary case?

- We proved the optimality using automata over a binary alphabet
- The cost of the conversion of unary nfa's into dfa's is $F(n)=\mathrm{e}^{O(\sqrt{n \log n})}$ (Chrobak, 1986)
- $F(n)$ grows more slowly than $g(n)$. Hence $F(n)$ is a better upper bound for the conversion of svfa's into dfa's in the unary case
- This upper bound is not optimal!
- In fact, if L is a unary language accepted by a n-state unary
nfa such that the minimal dfa for L requires $F(n)$ states, then each nfa for L^{c} requires $F(n)$ states (Mera, Pighizzini, 2005)

What about the optimality in the unary case?

- We proved the optimality using automata over a binary alphabet
- The cost of the conversion of unary nfa's into dfa's is $F(n)=\mathrm{e}^{O(\sqrt{n \log n})}$ (Chrobak, 1986)
- $F(n)$ grows more slowly than $g(n)$. Hence $F(n)$ is a better upper bound for the conversion of svfa's into dfa's in the unary case
- This upper bound is not optimal!
- In fact, if L is a unary language accepted by a n-state unary nfa such that the minimal dfa for L requires $F(n)$ states, then each nfa for L^{c} requires $F(n)$ states (Mera, Pighizzini, 2005)

Conclusion

- Each n-state svfa can be converted into an equivalent dfa with $g(n)$ states:
- We found the value of $g(n)$, which grows like $3^{\frac{n}{3}}$ - The bound is exact: for each integer n, there exists an svfa A_{n} with n states and an input alphabet of two letters such that the minimal equivalent dfa has $g(n)$ states.

Conclusion

- Each n-state svfa can be converted into an equivalent dfa with $g(n)$ states:
- We found the value of $g(n)$, which grows like $3^{\frac{n}{3}}$
- The bound is exact:
for each integer n, there exists an svfa A_{n} with n states and an input alphabet of two letters such that the minimal equivalent dfa has $g(n)$ states.
- Each n-state svfa with multiple initial states can be converted into an equivalent dfa with $f(n)=g(n+1)-1$ states. Also this bound is exact.

Conclusion

- Each n-state svfa can be converted into an equivalent dfa with $g(n)$ states:
- We found the value of $g(n)$, which grows like $3^{\frac{n}{3}}$
- The bound is exact:
for each integer n, there exists an svfa A_{n} with n states and an input alphabet of two letters such that the minimal equivalent dfa has $g(n)$ states.
- Each n-state svfa with multiple initial states can be converted into an equivalent dfa with $f(n)=g(n+1)-1$ states.
Also this bound is exact.
- In the unary case, a better upper bound is given by the
function $F(n)=e^{O(\sqrt{n \log n})}$.
However, this upper bound is not optimal.
It is an open problem to find a better upper bound in the
unary case.
- Each n-state svfa can be converted into an equivalent dfa with $g(n)$ states:
- We found the value of $g(n)$, which grows like $3^{\frac{n}{3}}$
- The bound is exact:
for each integer n, there exists an svfa A_{n} with n states and an input alphabet of two letters such that the minimal equivalent dfa has $g(n)$ states.
- Each n-state svfa with multiple initial states can be converted into an equivalent dfa with $f(n)=g(n+1)-1$ states. Also this bound is exact.
- In the unary case, a better upper bound is given by the function $F(n)=\mathrm{e}^{O(\sqrt{n \log n})}$.
However, this upper bound is not optimal.
It is an open problem to find a better upper bound in the unary case.

