Deterministic Pushdown Automata and Unary Languages

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione Università degli Studi di Milano ITALY

CIAA 2008

Giovanni Pighizzini dpda's and unary languages

Outline of the talk

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation.
- 0

・ロン・(部)とくほどくほどう ほ

Outline of the talk

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dia's by dpda's.

イロト イポト イヨト イヨト 一座

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dfa's by dpda's
- Unary dpda's vs context-free grammars.

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dfa's by dpda's
- Unary dpda's vs context-free grammars

★週 ▶ ★ 理 ▶ ★ 理 ▶ 二 理

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dfa's by dpda's
- Unary dpda's vs context-free grammars

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dfa's by dpda's
- Unary dpda's vs context-free grammars

▲□ → ▲ □ → ▲ □ → ▲ □ → ④ ヘ ○

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The winness language is is defined over a binary alphabet.

・ロト ・回 ト ・ヨト ・ヨト

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The witness language *L* is defined over a binary alphabet.

What about languages over a one letter

・ロト ・回 ト ・ヨト ・ヨト

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive.

However... The witness language *L* is defined over a binary alphabet.

What about languages over a one letter alphabet?

A (1) > A (2) > A

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The witness language L is defined over a binary alphabet.

What about languages over a one letter alphabet?

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least f(n) states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The witness language L is defined over a binary alphabet.

What about languages over a one letter alphabet?

 $\Sigma = \{a\}$

Theorem ([Ginsurg and Rice, 1962])

Every unary context-free language is regular.

Hence the classes of unary regular languages and unary *context–free* languages coincide!

Problem

Study the equivalence between unary context-free and regular languages from the descriptional complexity point of view.

くロト (過) (目) (日)

 $\Sigma = \{a\}$

Theorem ([Ginsurg and Rice, 1962])

Every unary context-free language is regular.

Hence the classes of unary regular languages and unary *context–free* languages coincide!

Problem

Study the equivalence between unary context-free and regular languages from the descriptional complexity point of view.

ヘロト 人間 ト くほ ト くほ トー

Unary case [Pighizzini, Shallit, Wang, 2002]

Theorem

For any cfg in Chomsky normal form with h variables, generating a unary language, there exists an equivalent dfa with 2^{h^2} states. Furthermore, this bound is tight.

Corollary

Each unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol, can be simulated by a dfa with $2^{O(n^4m^2)}$ states.

What about the deterministic case?

ヘロト ヘアト ヘビト ヘビト

Unary case [Pighizzini, Shallit, Wang, 2002]

Theorem

For any cfg in Chomsky normal form with h variables, generating a unary language, there exists an equivalent dfa with 2^{h^2} states. Furthermore, this bound is tight.

Corollary

Each unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol, can be simulated by a dfa with $2^{O(n^4m^2)}$ states.

What about the deterministic case?

くロト (過) (目) (日)

Unary case [Pighizzini, Shallit, Wang, 2002]

Theorem

For any cfg in Chomsky normal form with h variables, generating a unary language, there exists an equivalent dfa with 2^{h^2} states. Furthermore, this bound is tight.

Corollary

Each unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol, can be simulated by a dfa with $2^{O(n^4m^2)}$ states.

What about the deterministic case?

・ 同 ト ・ ヨ ト ・ ヨ ト

- Each dpda of size s accepting a regular language can be simulated by a dfa with 2^{2^{s^s}} states. [Stearns, 1967]
- This upper bound was reduced to 2^{2^s} in [Valiant, 1975].
- It cannot be further reduced because a matching lower bound [Meyer and Fischer, 1971].
- However, in the unary case, it can be reduced to 2ⁿ
 (ight bound).

(通) (モン・モン・モ

- Each dpda of size s accepting a regular language can be simulated by a dfa with 2^{2^{s^s}} states. [Stearns, 1967]
- This upper bound was reduced to 2^{2^s} in [Valiant, 1975].
- It cannot be further reduced because a matching lower bound [Meyer and Fischer, 1971].
- However, in the unary case, it can be reduced to 2^s [this work] (tight bound).

(日本)(日本)(日本)(日本)

- Each dpda of size s accepting a regular language can be simulated by a dfa with 2^{2^{s^s}} states. [Stearns, 1967]
- This upper bound was reduced to 2^{2^s} in [Valiant, 1975].
- It cannot be further reduced because a matching lower bound [Meyer and Fischer, 1971].
- However, in the unary case, it can be reduced to 2^s [this work] (tight bound).

(日本)(日本)(日本)(日本)

- Each dpda of size s accepting a regular language can be simulated by a dfa with 2^{2^{s^s}} states. [Stearns, 1967]
- This upper bound was reduced to 2^{2^s} in [Valiant, 1975].
- It cannot be further reduced because a matching lower bound [Meyer and Fischer, 1971].
- However, in the unary case, it can be reduced to 2^s [this work] (tight bound).

(日本) (日本) (日本) 日

• Size of a finite automaton: Number of its states

• Size of a pushdown automaton:

Total number of symbols needed to write down its description.

We have to keep into account:

- the number of the states
- the cardinality of the pushdown alphabet
- the length of the strings that can be pushed in one move on the stack
- the number of transitions

(ロ) (四) (注) (注) (注) (二)

- Size of a finite automaton: Number of its states
- Size of a pushdown automaton:

Total number of symbols needed to write down its description.

We have to keep into account:

- the number of the states
- the cardinality of the pushdown alphabet
- the length of the strings that can be pushed in one move on the stack
- the number of transitions

イロト イポト イヨト イヨト 一座

- Size of a finite automaton: Number of its states
- Size of a pushdown automaton:

Total number of symbols needed to write down its description.

We have to keep into account:

- the number of the states
- the cardinality of the pushdown alphabet
- the length of the strings that can be pushed in one move on the stack
- the number of transitions

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Size of dpda's

Normal form for pda's (some restrictions on the transitions)

- We can prove that each dpda of size *s* can be converted into an equivalent dpda in normal form such that the product of
 - the number of states
 - the cardinality of the pushdown alphabet
 - is O(s).

Hence, we can restrict our attention to:

- dpda's in normal form with
- size = # states × # pushdown alphabet

イロト 不得 トイヨト イヨト 三連

Normal form for pda's (some restrictions on the transitions)

- We can prove that each dpda of size *s* can be converted into an equivalent dpda in normal form such that the product of
 - the number of states
 - the cardinality of the pushdown alphabet
 - is O(s).

Hence, we can restrict our attention to:

- dpda's in normal form with
- size = # states × # pushdown alphabet

(本間) (本語) (本語) (語)

Normal form for pda's (some restrictions on the transitions)

- We can prove that each dpda of size *s* can be converted into an equivalent dpda in normal form such that the product of
 - the number of states
 - the cardinality of the pushdown alphabet

is O(s).

Hence, we can restrict our attention to:

- dpda's in normal form with
- size = # states × # pushdown alphabet

Input alphabet $\Sigma = \{a\}$

Theorem

$L \subseteq \{a\}^*$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

 $\forall n \geq \mu : a^n \in L$ iff $a^{n+\lambda} \in L$.

<ロ> <同> <同> <同> <同> <同> <同> <

Input alphabet $\Sigma = \{a\}$

Theorem

$L \subseteq \{a\}^*$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

 $\forall n \geq \mu : a^n \in L$ iff $a^{n+\lambda} \in L$.

<ロ> <同> <同> <同> <同> <同> <同> <

Input alphabet $\Sigma = \{a\}$

Theorem

 $L \subseteq \{a\}^*$ is regular iff $\exists \mu \ge 0, \lambda \ge 1$ s.t.

 $\forall n \geq \mu : a^n \in L \text{ iff } a^{n+\lambda} \in L.$

・ロト ・回 ト ・ ヨト ・ ヨトー

-20

Input alphabet $\Sigma = \{a\}$

Theorem

 $L \subseteq \{a\}^*$ is regular iff $\exists \mu \ge 0, \lambda \ge 1$ s.t.

 $orall n \geq \mu : a^n \in L$ iff $a^{n+\lambda} \in L$.

Giovanni Pighizzini dpda's and unary languages

・ロト ・回ト ・ ヨト ・ ヨト …

-20

Input alphabet $\Sigma = \{a\}$

Theorem

 $L \subseteq \{a\}^*$ is regular iff $\exists \mu \ge 0, \lambda \ge 1$ s.t.

$$\forall n \geq \mu : a^n \in L \text{ iff } a^{n+\lambda} \in L.$$

・ロト ・回 ト ・ ヨ ト ・ ヨ ト ・

-20

Unary automata

The costs of the optimal simulations between automata are different in the unary and in the general case!

Costs in the unary case: [Chrobak 1986, Mereghetti and Pighizzini 2001]

э

Unary automata

The costs of the optimal simulations between automata are different in the unary and in the general case!

Costs in the unary case:

[Chrobak 1986, Mereghetti and Pighizzini 2001]

Pushdown automata

(q, x, Zα) configuration
 [qZ] mode

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Pushdown automata

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- M is *deterministic* iff $\forall q \in Q, Z \in \Gamma$:
 - if $\delta(q, \epsilon, Z) \neq \emptyset$ then $\delta(q, a, Z) = \emptyset$, for each $a \in \Sigma$
 - $\#\delta(q, \sigma, Z) \leq 1$, for each $\sigma \in \Sigma \cup \{\epsilon\}$.
- Deterministic cfl's: acceptance by final states

 $L(M) = \{x \in \Sigma^* \mid (q_0, x, Z_0) \vdash^* (q, \epsilon, \gamma), q \in F, \gamma \in \Gamma^*\}$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- M is *deterministic* iff $\forall q \in Q, Z \in \Gamma$:
 - if $\delta(q, \epsilon, Z) \neq \emptyset$ then $\delta(q, a, Z) = \emptyset$, for each $a \in \Sigma$
 - $\#\delta(q, \sigma, Z) \leq 1$, for each $\sigma \in \Sigma \cup \{\epsilon\}$.
- Deterministic cfl's: acceptance by final states

$$\mathcal{L}(\mathcal{M}) = \{ x \in \Sigma^* \mid (q_0, x, Z_0) \vdash^{\star} (q, \epsilon, \gamma), q \in \mathcal{F}, \gamma \in \Gamma^* \}$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

2

Unary deterministic pda's:

For each integer $t \ge 0$:

 if the computation does not stop before t steps then the configuration reach at the step t does not depend on the input length

イロト イポト イヨト イヨト 一座

Unary deterministic pda's:

For each integer $t \ge 0$:

 if the computation does not stop before t steps then the configuration reach at the step t does not depend on the input length

(本間) (本語) (本語) (二語)

Modes

$[qA] \leq [pB]$ iff all the following conditions hold:

- A configuration C with mode [qA] is reachable from the initial configuration
- A configuration with mode [8q] abom this notarupithon A. Contarupithon of the state of the state
- .2 eroled eldadoar al [Boj] eborn filw (2 notarugilinoo a 1 nen

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- A configuration C with mode [qA] is reachable from the initial configuration
- A configuration with mode [*pB*] is reachable from the configuration with mode [*qA*] and pushdown store containing only A
- If a configuration C' with mode [pB] is reachable before C, then the stack height in some configuration between C' and C must be loce than in C'

ヘロト ヘアト ヘビト ヘビト

Modes

 $[qA] \leq [pB]$ iff all the following conditions hold:

A configuration C with mode [qA] is reachable from the initial configuration

A configuration with mode [*pB*] is reachable from the configuration with mode [*qA*] and pushdown store containing only *A*

If a configuration C' with mode [pB] is reachable before C, then the stack height in some configuration between C' and C must be less than in C'.

- A configuration C with mode [qA] is reachable from the initial configuration
- A configuration with mode [*pB*] is reachable from the configuration with mode [*qA*] and pushdown store containing only *A*

If a configuration C' with mode [pB] is reachable before C, then the stack height in some configuration between C' and C must be less than in C'.

- A configuration C with mode [qA] is reachable from the initial configuration
- A configuration with mode [*pB*] is reachable from the configuration with mode [*qA*] and pushdown store containing only *A*
- If a configuration C' with mode [pB] is reachable before C, then the stack height in some configuration between C' and C must be less than in C'.

- A configuration C with mode [qA] is reachable from the initial configuration
- A configuration with mode [*pB*] is reachable from the configuration with mode [*qA*] and pushdown store containing only *A*
- If a configuration C' with mode [pB] is reachable before C, then the stack height in some configuration between C' and C must be less than in C'.

Lemma

The relation \leq defines a partial order on the set of the modes.

Giovanni Pighizzini dpda's and unary languages

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

h_t history at the time t

Stack content + state information

History h_t at the time *t*: sequence of modes $[q_m Z_m] \dots [q_1 Z_1]$ s.t.:

- $Z_m \dots Z_1$ is the stack content after *t* computation steps
- for i = 1,..., m, [q_iZ_i] is the mode of the last visited configuration with stack height i

・ 同 ト ・ ヨ ト ・ ヨ ト ・

For each step $t \ge 0$ we consider:

- h_t history
- *m_t* mode (leftmost element of *h_t*)

For the given dpda *M* we consider:

- $H = \{h_t \mid t \ge 0\}$, the set all *reachable histories*
- $(m_t)_{t\geq 0}$, the sequence of *reached modes*

Two possibilities:

- Every history belonging to H does not contain a repeated mode
- At least one history belonging to H contains a repetition.

イロト イポト イヨト イヨト 三油

For each step $t \ge 0$ we consider:

- h_t history
- *m_t* mode (leftmost element of *h_t*)

For the given dpda *M* we consider:

- $H = \{h_t \mid t \ge 0\}$, the set all *reachable histories*
- $(m_t)_{t\geq 0}$, the sequence of *reached modes*

Two possibilities:

- Every history belonging to H does not contain a repeated mode
- At least one history belonging to H contains a repetition

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

For each step $t \ge 0$ we consider:

- h_t history
- *m_t* mode (leftmost element of *h_t*)

For the given dpda *M* we consider:

- $H = \{h_t \mid t \ge 0\}$, the set all *reachable histories*
- $(m_t)_{t\geq 0}$, the sequence of *reached modes*

Two possibilities:

- Every history belonging to H does not contain a repeated mode
- At least one history belonging to H contains a repetition

• H is finite

- The given dpda can be simulated by a deterministic automaton *A* whose set of states is *H*
- The number of the states of *A* is bounded by the number of histories without repetitions
- If an history [q_mZ_m]...[q₁Z₁] does not contain any repetition, then [q₁Z₁] ≤ [q₂Z₂] ≤ ... ≤ [q_mZ_m]
- Hence:

the number of states of the deterministic automaton *A* is bounded by $2^{\#Q\cdot\#\Gamma}$

▲圖 → ▲ 国 → ▲ 国 → 二 国

• H is finite

- The given dpda can be simulated by a deterministic automaton *A* whose set of states is *H*
- The number of the states of *A* is bounded by the number of histories without repetitions
- If an history $[q_m Z_m] \dots [q_1 Z_1]$ does not contain any repetition, then $[q_1 Z_1] \leq [q_2 Z_2] \leq \dots \leq [q_m Z_m]$
- Hence:

the number of states of the deterministic automaton *A* is bounded by $2^{\#Q\cdot\#\Gamma}$

▲圖 → ▲ 国 → ▲ 国 → 二 国

- H is finite
- The given dpda can be simulated by a deterministic automaton *A* whose set of states is *H*
- The number of the states of *A* is bounded by the number of histories without repetitions
- If an history [q_mZ_m]... [q₁Z₁] does not contain any repetition, then [q₁Z₁] ≤ [q₂Z₂] ≤ ... ≤ [q_mZ_m]
- Hence:

the number of states of the deterministic automaton *A* is bounded by $2^{\#Q\cdot\#\Gamma}$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣 …

- H is finite
- The given dpda can be simulated by a deterministic automaton *A* whose set of states is *H*
- The number of the states of *A* is bounded by the number of histories without repetitions
- If an history [q_mZ_m]... [q₁Z₁] does not contain any repetition, then [q₁Z₁] ≤ [q₂Z₂] ≤ ... ≤ [q_mZ_m]
- Hence:

the number of states of the deterministic automaton *A* is bounded by $2^{\#Q\cdot\#\Gamma}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

- H is finite
- The given dpda can be simulated by a deterministic automaton *A* whose set of states is *H*
- The number of the states of *A* is bounded by the number of histories without repetitions
- If an history [*q_mZ_m*]...[*q*₁*Z*₁] does not contain any repetition, then [*q*₁*Z*₁] ≤ [*q*₂*Z*₂] ≤ ... ≤ [*q_mZ_m*]

• Hence:

the number of states of the deterministic automaton *A* is bounded by $2^{\#Q\cdot\#\Gamma}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

- H is finite
- The given dpda can be simulated by a deterministic automaton *A* whose set of states is *H*
- The number of the states of *A* is bounded by the number of histories without repetitions
- If an history [*q_mZ_m*]...[*q*₁*Z*₁] does not contain any repetition, then [*q*₁*Z*₁] ≤ [*q*₂*Z*₂] ≤ ... ≤ [*q_mZ_m*]
- Hence:

the number of states of the deterministic automaton A is bounded by $2^{\#Q\cdot\#\Gamma}$

Case 2: At least one history in H contains a repetition

The histories in *H* grow in a periodic way, i.e.:
 ∃μ ≥ 0, λ ≥ 1, ∃ sequences of modes h
₀, h
₁,..., h
_λ s.t. for t ≥ μ, the history at the step t is:

$h_t = ilde{h}_{t\,{ m MOD}\,\lambda}(ilde{h}_\lambda)^{\lfloorrac{t-\mu}{\lambda} floo}h_\mu$

- The sequence (m_t)_{t≥0} is ultimately periodic (period λ, from t ≥ μ)
- The language can be accepted by a deterministic automaton A with at most $\lambda + \mu$ states
- $\lambda + \mu \leq 2^{\#Q\cdot\#\Gamma}$
- Hence:

the given dpda can be simulated by a deterministic automaton A with at most $2^{\#Q\cdot\#\Gamma}$ states

Case 2: At least one history in H contains a repetition

• The histories in *H* grow in a periodic way, i.e.:

 $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\hat{h}_0, \hat{h}_1, \dots, \hat{h}_\lambda$ s.t. for $t \geq \mu$, the history at the step *t* is:

 $h_t = ilde{h}_{t\,{
m MOD}\,\lambda}(ilde{h}_\lambda)^{\lfloorrac{t-\mu}{\lambda}
floo}h_\mu$

- The sequence (m_t)_{t≥0} is ultimately periodic (period λ, from t ≥ μ)
- The language can be accepted by a deterministic automaton A with at most $\lambda + \mu$ states
- $\lambda + \mu \leq 2^{\#Q\cdot\#\Gamma}$
- Hence:

the given dpda can be simulated by a deterministic automaton A with at most $2^{\#Q\cdot\#\Gamma}$ states

イロン 不良 とくほう 不良 とうほ

Case 2: At least one history in H contains a repetition

• The histories in *H* grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_0, \tilde{h}_1, \ldots, \tilde{h}_\lambda$ s.t. for $t \geq \mu$, the history at the step *t* is:

 $h_t = \tilde{h}_{t \, {
m MOD} \, \lambda} (\tilde{h}_{\lambda})^{\lfloor rac{t-\mu}{\lambda}
floor} h_{\mu}$

- The sequence (m_t)_{t≥0} is ultimately periodic (period λ, from t ≥ μ)
- The language can be accepted by a deterministic automaton A with at most $\lambda + \mu$ states
- $\lambda + \mu \leq 2^{\#Q \cdot \#\Gamma}$
- Hence:

the given dpda can be simulated by a deterministic automaton A with at most $2^{\#Q\cdot\#\Gamma}$ states

イロン 不良 とくほう 不良 とうほ

Case 2: At least one history in H contains a repetition

• The histories in *H* grow in a periodic way, i.e.: $\exists \mu \ge 0, \lambda \ge 1, \exists$ sequences of modes $\tilde{h}_0, \tilde{h}_1, \dots, \tilde{h}_\lambda$ s.t. for $t \ge \mu$, the history at the step *t* is:

 $h_t = \tilde{h}_{t \, {
m MOD} \, \lambda} (\tilde{h}_{\lambda})^{\lfloor rac{t-\mu}{\lambda}
floor} h_{\mu}$

- The sequence (m_t)_{t≥0} is ultimately periodic (period λ, from t ≥ μ)
- The language can be accepted by a deterministic automaton A with at most $\lambda + \mu$ states
- $\lambda + \mu \leq 2^{\#Q \cdot \#\Gamma}$
- Hence:

the given dpda can be simulated by a deterministic automaton A with at most $2^{\#Q\cdot\#\Gamma}$ states

イロン 不良 とくほう 不良 とうほ

Case 2: At least one history in H contains a repetition

• The histories in *H* grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_0, \tilde{h}_1, \dots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step *t* is:

 $h_t = \tilde{h}_{t \, {
m MOD} \, \lambda} (\tilde{h}_{\lambda})^{\lfloor rac{t-\mu}{\lambda}
floor} h_{\mu}$

- The sequence (m_t)_{t≥0} is ultimately periodic (period λ, from t ≥ μ)
- The language can be accepted by a deterministic automaton A with at most $\lambda + \mu$ states
- $\lambda + \mu \leq 2^{\#Q \cdot \#\Gamma}$
- Hence:

the given dpda can be simulated by a deterministic automaton A with at most $2^{\#Q\cdot\#\Gamma}$ states

Case 2: At least one history in H contains a repetition

• The histories in *H* grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_0, \tilde{h}_1, \dots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step *t* is:

 $h_t = \tilde{h}_{t \, {
m MOD} \, \lambda} (\tilde{h}_{\lambda})^{\lfloor rac{t-\mu}{\lambda}
floor} h_{\mu}$

- The sequence (m_t)_{t≥0} is ultimately periodic (period λ, from t ≥ μ)
- The language can be accepted by a deterministic automaton A with at most $\lambda + \mu$ states
- $\lambda + \mu \leq 2^{\#Q\cdot\#\Gamma}$
- Hence:

the given dpda can be simulated by a deterministic automaton A with at most $2^{\#Q\cdot\#\Gamma}$ states

Case 2: At least one history in H contains a repetition

• The histories in *H* grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_0, \tilde{h}_1, \dots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step *t* is:

 $h_t = \tilde{h}_{t \, {
m MOD} \, \lambda} (\tilde{h}_{\lambda})^{\lfloor rac{t-\mu}{\lambda}
floor} h_{\mu}$

- The sequence (m_t)_{t≥0} is ultimately periodic (period λ, from t ≥ μ)
- The language can be accepted by a deterministic automaton A with at most λ + μ states
- $\lambda + \mu \leq 2^{\#Q\cdot\#\Gamma}$
- Hence:

the given dpda can be simulated by a deterministic automaton A with at most $2^{\#Q\cdot\#\Gamma}$ states

As a consequence:

Theorem

Each unary dpda of size s can be simulated by a dfa with $2^{O(s)}$ states.

What about the optimality of this simulation?

イロト イポト イヨト イヨト 一座

As a consequence:

Theorem

Each unary dpda of size s can be simulated by a dfa with $2^{O(s)}$ states.

What about the optimality of this simulation?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Unary dpda's vs dfa's: lower bound

Given s > 0 consider $L_s = (a^{2^s})^*$. We can prove that:

- There exists a dpda of size 8s + 4 accepting L_s .
- Each dfa accepting L_s must have at least 2^s states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation of unary dpda's, by using *nondeterministic* or *two-way* finite automata?

ヘロト 人間 とくほとくほとう

Unary dpda's vs dfa's: lower bound

Given s > 0 consider $L_s = (a^{2^s})^*$.

We can prove that:

- There exists a dpda of size 8s + 4 accepting L_s .
- Each dfa accepting L_s must have at least 2^s states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation of unary dpda's, by using *nondeterministic* or *two-way* finite automata?

イロト イ団ト イヨト イヨト 三連

Given s > 0 consider $L_s = (a^{2^s})^*$.

We can prove that:

- There exists a dpda of size 8s + 4 accepting L_s .
- Each dfa accepting L_s must have at least 2^s states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation of unary dpda's, by using *nondeterministic* or *two-way* finite automata?

イロン イロン イヨン イヨン 三臣

Given s > 0 consider $L_s = (a^{2^s})^*$.

We can prove that:

- There exists a dpda of size 8s + 4 accepting L_s .
- Each dfa accepting L_s must have at least 2^s states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation of unary dpda's, by using *nondeterministic* or *two-way* finite automata?

(通) (モン・モン・モ

Given s > 0 consider $L_s = (a^{2^s})^*$.

We can prove that:

- There exists a dpda of size 8s + 4 accepting L_s .
- Each dfa accepting L_s must have at least 2^s states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation of unary dpda's, by using *nondeterministic* or *two-way* finite automata?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Unary dpda's vs 2nfa's

- We consider again $L_s = (a^{2^s})^*, s > 0$
- L_s is accepted by a dpda of size 8s + 4
- Furthermore, even each two-way nondeterministic automaton accepting L_s needs 2^s states [Mereghetti, Pighizzini, 2000]

Hence:

Even the cost of the optimal simulation of unary dpda's by 2nfa's is exponential!

<ロ> (四) (四) (三) (三) (三)

- We consider again $L_s = (a^{2^s})^*, s > 0$
- L_s is accepted by a dpda of size 8s + 4
- Furthermore, even each two-way nondeterministic automaton accepting L_s needs 2^s states [Mereghetti, Pighizzini, 2000]

Hence:

Even the cost of the optimal simulation of unary dpda's by 2nfa's is exponential!

イロト イポト イヨト イヨト 一座

- We consider again $L_s = (a^{2^s})^*, s > 0$
- L_s is accepted by a dpda of size 8s + 4
- Furthermore, even each two-way nondeterministic automaton accepting L_s needs 2^s states [Mereghetti, Pighizzini, 2000]

Hence:

Even the cost of the optimal simulation of unary dpda's by 2nfa's is exponential!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

- We consider again $L_s = (a^{2^s})^*, s > 0$
- L_s is accepted by a dpda of size 8s + 4
- Furthermore, even each two-way nondeterministic automaton accepting L_s needs 2^s states [Mereghetti, Pighizzini, 2000]

Hence:

Even the cost of the optimal simulation of unary dpda's by 2nfa's is exponential!

▲御♪ ▲ヨ♪ ▲ヨ♪ 二旦

- We consider again $L_s = (a^{2^s})^*, s > 0$
- L_s is accepted by a dpda of size 8s + 4
- Furthermore, even each two-way nondeterministic automaton accepting L_s needs 2^s states [Mereghetti, Pighizzini, 2000]

Hence:

Even the cost of the optimal simulation of unary dpda's by 2nfa's is exponential!

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Unary dpda's can be exponentially more succinct than dfa's. Does this is true for *each* unary regular language?

Problem

For $m \ge 0$, let $L_m \subseteq a^*$ be a language accepted by a dfa with 2^m states.

Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative:

- For each m > 0 there exists a language $L_m \subseteq a^*$ s.t.:
 - L_m is accepted by a dfa with 2^m states.
 - The size of any dpda accepting L_m is at least d^{2m}/_{m²}, for a constant d.

イロト イポト イヨト イヨト 三油

Unary dpda's can be exponentially more succinct than dfa's. Does this is true for *each* unary regular language?

Problem

For $m \ge 0$, let $L_m \subseteq a^*$ be a language accepted by a dfa with 2^m states.

Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative:

For each m > 0 there exists a language $L_m \subseteq a^*$ s.t.:

- L_m is accepted by a dfa with 2^m states.
- The size of any dpda accepting *L_m* is at least $d_{m^2}^{2^m}$, for a constant *d*.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Unary dpda's can be exponentially more succinct than dfa's. Does this is true for *each* unary regular language?

Problem

For $m \ge 0$, let $L_m \subseteq a^*$ be a language accepted by a dfa with 2^m states.

Does there exists an equivalent dpda with O(m) states?

The answer to this question is negative:

For each m > 0 there exists a language $L_m \subseteq a^*$ s.t.:

- L_m is accepted by a dfa with 2^m states.
- The size of any dpda accepting L_m is at least d^{2^m}/_{m²}, for a constant d.

ヘロン 人間 とくほど くほとう

 w_m de Bruijn word of order m on $\{0, 1\}$:

- $|w_m| = 2^m + m 1$
- each string of length *m* is a factor of *w_m*, occurring in *w_m* exactly one time
- the suffix and the prefix of length m 1 of w_m coincide.

Example: *w*₃ = 0001011100

 $L_m = \{a^k \mid \text{the letter of } w_m \text{ in position } k \text{ MOD } '2^m \text{ is } 1\},$ where x MOD 'y = x MOD y, if x MOD y > 0, y otherwise Example: $L_3 = \{a^0, a^4, a^6, a^7\}\{a^8\}^*$.

L_m is accepted by a dfa with 2^m states

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

 w_m de Bruijn word of order m on $\{0, 1\}$:

•
$$|w_m| = 2^m + m - 1$$

- each string of length *m* is a factor of *w_m*, occurring in *w_m* exactly one time
- the suffix and the prefix of length m 1 of w_m coincide.

Example: *w*₃ = 0001011100

 $L_m = \{a^k \mid \text{the letter of } w_m \text{ in position } k \text{ MOD } '2^m \text{ is } 1\},$ where x MOD 'y = x MOD y, if x MOD y > 0, y otherwise Example: $L_3 = \{a^0, a^4, a^6, a^7\}\{a^8\}^*$.

L_m is accepted by a dfa with 2^m states

(個) (目) (日) (日)

• *M*: a dpda of size *s* accepting *L_m*

- *M*': *M* extended with an output tape to generate the de Bruijn word
- *A*: a dfa with *m* + 1 states, input alphabet {0, 1}, ending and accepting when the last *m* input symbols coincide with the suffix of length *m* of *w*_m
- *M*": a dpda of size O(ms), composition of M' and A, accepting {a^{2m+m-1}}
- *G*: cfg grammar of size *O*(*ms*), obtained from *M*", generating {*w_m*}

emma ([Domaratzki, Pighizzini, Shallit, 2002]).

The size of each grammar G generating $\{w_m\}$ must be at least $c_m^{2^m}$, for some constant c.

イロト イポト イヨト イヨト

- *M*: a dpda of size *s* accepting *L_m*
- *M*': *M* extended with an output tape to generate the de Bruijn word
- *A*: a dfa with *m* + 1 states, input alphabet {0, 1}, ending and accepting when the last *m* input symbols coincide with the suffix of length *m* of *w*_m
- *M*": a dpda of size O(ms), composition of M' and A, accepting {a^{2m+m-1}}
- G: cfg grammar of size O(ms), obtained from M", generating {w_m}

emma ([Domaraizki, Pighizzini, Shaliii, 2002]).

The size of each grammar G generating $\{w_m\}$ must be at least $c^{\frac{2m}{m}}$, for some constant c.

(日) (四) (日) (日) (日)

- *M*: a dpda of size *s* accepting *L_m*
- *M*': *M* extended with an output tape to generate the de Bruijn word
- *A*: a dfa with *m* + 1 states, input alphabet {0, 1}, ending and accepting when the last *m* input symbols coincide with the suffix of length *m* of *w*_m
- *M*": a dpda of size O(ms), composition of M' and A, accepting {a^{2m+m-1}}
- G: cfg grammar of size O(ms), obtained from M", generating {w_m}

emma ([Domaraizki, Pighizzini, Shaliii, 2002]).

The size of each grammar G generating $\{w_m\}$ must be at least $c^{\frac{2m}{m}}$, for some constant c.

・ロト ・回 ト ・ヨト ・ヨト

- *M*: a dpda of size *s* accepting *L_m*
- *M*': *M* extended with an output tape to generate the de Bruijn word
- *A*: a dfa with *m* + 1 states, input alphabet {0, 1}, ending and accepting when the last *m* input symbols coincide with the suffix of length *m* of *w*_m
- *M*": a dpda of size O(ms), composition of *M*' and *A*, accepting {a^{2m+m-1}}
- G: cfg grammar of size O(ms), obtained from M", generating {w_m}

emma (Domaratzki, Pighizzini, Shallit, 2002).

The size of each grammar G generating $\{w_m\}$ must be at least $c_m^{2^m}$, for some constant c.

くロト (過) (目) (日)

- *M*: a dpda of size *s* accepting *L_m*
- *M*': *M* extended with an output tape to generate the de Bruijn word
- *A*: a dfa with *m* + 1 states, input alphabet {0, 1}, ending and accepting when the last *m* input symbols coincide with the suffix of length *m* of *w*_m
- *M*": a dpda of size O(ms), composition of *M*' and *A*, accepting {a^{2m+m-1}}
- G: cfg grammar of size O(ms), obtained from M", generating {w_m}

Lemma ([Domaratzki, Pighizzini, Shallit, 2002])

The size of each grammar G generating $\{w_m\}$ must be at least $c^{\frac{2m}{m}}$, for some constant c.

Giovanni Pighizzini dpda's and unary languages

ヘロト ヘ回ト ヘヨト ヘヨト

- *M*: a dpda of size *s* accepting *L_m*
- *M*': *M* extended with an output tape to generate the de Bruijn word
- *A*: a dfa with *m* + 1 states, input alphabet {0, 1}, ending and accepting when the last *m* input symbols coincide with the suffix of length *m* of *w*_m
- *M*": a dpda of size O(ms), composition of *M*' and *A*, accepting {a^{2m+m-1}}
- G: cfg grammar of size O(ms), obtained from M", generating {w_m}

Lemma ([Domaratzki, Pighizzini, Shallit, 2002])

Hence $s \ge d \frac{2^m}{m^2}$, for some d > 0.

The size of each grammar G generating $\{w_m\}$ must be at least $c\frac{2^m}{m}$, for some constant c.

- *M*: a dpda of size *s* accepting *L_m*
- *M*': *M* extended with an output tape to generate the de Bruijn word
- *A*: a dfa with *m* + 1 states, input alphabet {0, 1}, ending and accepting when the last *m* input symbols coincide with the suffix of length *m* of *w*_m
- *M*": a dpda of size O(ms), composition of *M*' and *A*, accepting {a^{2m+m-1}}
- G: cfg grammar of size O(ms), obtained from M", generating {w_m}

Lemma ([Domaratzki, Pighizzini, Shallit, 2002])

The size of each grammar G generating $\{w_m\}$ must be at least $c^{\frac{2^m}{m}}$, for some constant c.

Hence $s \ge d \frac{2^m}{m^2}$, for some d > 0.

As a consequence we get the following *lower bound*:

Corollary

There exists a constant K > 0 such that the conversion of unary n-state dfa's into equivalent dpda's produces dpda's of size at least $K \frac{n}{\log^2 n}$, for infinitely many n's.

・ 同 ト ・ 臣 ト ・ 臣 ト …

- Each pda can be transformed into an equivalent cfg with $(\#Q)^2 \cdot \#\Gamma + 1$ variables.
- This number cannot be reduced, even if the given pda is deterministic [Goldstine, Price, Wotschke, 1982].

However, we proved that:

Theorem

Each unary dpda can be transformed into an equivalent cfg grammar with $\#Q \cdot \#\Gamma$ variables.

ヘロト 人間 とくほとくほとう

- Each pda can be transformed into an equivalent cfg with (#Q)² · #Γ + 1 variables.
- This number cannot be reduced, even if the given pda is deterministic [Goldstine, Price, Wotschke, 1982].

However, we proved that:

Theorem

Each unary dpda can be transformed into an equivalent cfg grammar with $\#Q \cdot \#\Gamma$ variables.

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- Each pda can be transformed into an equivalent cfg with (#Q)² · #Γ + 1 variables.
- This number cannot be reduced, even if the given pda is deterministic [Goldstine, Price, Wotschke, 1982].

However, we proved that:

Theorem

Each unary dpda can be transformed into an equivalent cfg grammar with $\#Q \cdot \#\Gamma$ variables.

イロン 不良 とくほう 不良 とうほ

- Each pda can be transformed into an equivalent cfg with (#Q)² · #Γ + 1 variables.
- This number cannot be reduced, even if the given pda is deterministic [Goldstine, Price, Wotschke, 1982].

However, we proved that:

Theorem

Each unary dpda can be transformed into an equivalent cfg grammar with $\#Q \cdot \#\Gamma$ variables.

イロト イポト イヨト イヨト 三油

Related questions and results

Bounded languages:

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n .

Extend the investigation to *bounded deterministic context-free* languages:

- Simulation of dpda's accepting *bounded regular* languages, by finite automata.
- Simulation of dpda's accepting bounded (context-free) languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Each bounded context-free language generated by a clg with h variables in Chornsly normal form is accepted by a finite-turn pda with 2¹ and O(1) stack symbols.

NUMBER NEADER -

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n .

Extend the investigation to *bounded deterministic context-free* languages:

- Simulation of dpda's accepting *bounded regular* languages, by finite automata.
- Simulation of dpda's accepting bounded (context-free) languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Theorem ([Maicher Pighizzini, 2007])

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^h and O(1) stack symbols.

server server -

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n .

Extend the investigation to *bounded deterministic context-free* languages:

- Simulation of dpda's accepting *bounded regular* languages, by finite automata.
- Simulation of dpda's accepting *bounded (context-free)* languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Theorem ([Maicher Pighizzini 2007])

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^h and O(1) stack symbols.

server server -

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n .

Extend the investigation to *bounded deterministic context-free* languages:

- Simulation of dpda's accepting *bounded regular* languages, by finite automata.
- Simulation of dpda's accepting *bounded (context-free)* languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Theorem ([Malcher, Pighizzini, 2007])

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^h and O(1) stack symbols.

.

Subsets of $w_1^* w_2^* \dots w_n^*$, for given words w_1, \dots, w_n .

Extend the investigation to *bounded deterministic context-free* languages:

- Simulation of dpda's accepting *bounded regular* languages, by finite automata.
- Simulation of dpda's accepting *bounded (context-free)* languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Theorem ([Malcher, Pighizzini, 2007])

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^{h} and O(1) stack symbols.