Deterministic Pushdown Automata and Unary Languages

Giovanni Pighizzini

Dipartimento di Informatica e Comunicazione
Università degli Studi di Milano
ITALY

CIAA 2008

Outline of the talk

- Context-free grammars and pda's vs regular languages: some descriptional complexity results

Outline of the talk

- Context-free grammars and pda’s vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's

Outline of the talk

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation

Outline of the talk

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dfa's by dpda's

Outline of the talk

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dfa's by dpda's
- Unary dpda's vs context-free grammars

Outline of the talk

- Context-free grammars and pda's vs regular languages: some descriptional complexity results
- Exponential simulation of unary dpda's by dfa's
- Optimality of the simulation
- Simulation of unary dfa's by dpda's
- Unary dpda's vs context-free grammars

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem
For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least $f(n)$ states.

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least $f(n)$ states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However..

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least $f(n)$ states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive. However... The witness language L is defined over a binary
alphabet.

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least $f(n)$ states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive.
However... The witness language L is defined over a binary alphabet.

What about languages over a one letter

Context-free vs regular: descriptional complexity

Given a context-free grammar (or a pushdown automaton) of size n, generating a regular language, how much is big an equivalent finite automaton, wrt n ?

Theorem ([Meyer and Fischer, 1971])

For any recursive function f and arbitrarily large integers n, there exists a cfg G of size n generating a regular language L, s.t. any dfa accepting L must have at least $f(n)$ states.

As a consequence, the trade-off between context-grammars and finite automata is not recursive.
However... The witness language L is defined over a binary alphabet.

What about languages over a one letter alphabet?

Unary languages

$\Sigma=\{a\}$

Theorem ([Ginsurg and Rice, 1962])

Every unary context-free language is regular.
Hence the classes of unary regular languages and unary context-free languages coincide!

Problem

Study the equivalence between unary context-free and regular languages from the descriotional complexity point of view.

Unary languages

$$
\Sigma=\{a\}
$$

Theorem ([Ginsurg and Rice, 1962])

Every unary context-free language is regular.

Hence the classes of unary regular languages and unary context-free languages coincide!

Problem

Study the equivalence between unary context-free and regular languages from the descriptional complexity point of view.

Context-free vs regular

Unary case [Pighizzini, Shallit, Wang, 2002]

Theorem

For any cfg in Chomsky normal form with h variables, generating a unary language, there exists an equivalent dfa with $2^{h^{2}}$ states. Furthermore, this bound is tight.

Corollary

Each unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol, can be simulated by a dfa with $2^{O\left(n^{4} m^{2}\right)}$ states.

Context-free vs regular

Unary case [Pighizzini, Shallit, Wang, 2002]

Theorem

For any cfg in Chomsky normal form with h variables, generating a unary language, there exists an equivalent dfa with $2^{h^{2}}$ states. Furthermore, this bound is tight.

Corollary

Each unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol, can be simulated by a dfa with $2^{O\left(n^{4} m^{2}\right)}$ states.

What about the deterministic case?

Context-free vs regular

Unary case [Pighizzini, Shallit, Wang, 2002]

Theorem

For any cfg in Chomsky normal form with h variables, generating a unary language, there exists an equivalent dfa with $2^{h^{2}}$ states. Furthermore, this bound is tight.

Corollary

Each unary pda with n states and m stack symbols, s.t. each push adds exactly one symbol, can be simulated by a dfa with $2^{O\left(n^{4} m^{2}\right)}$ states.

What about the deterministic case?

Dpda's vs finite automata (general case)

- Each dpda of size s accepting a regular language can be simulated by a dfa with $2^{2^{2^{5}}}$ states. [Stearns, 1967]

Dpda's vs finite automata (general case)

- Each dpda of size s accepting a regular language can be simulated by a dfa with $2^{2^{2^{5}}}$ states. [Stearns, 1967]
- This upper bound was reduced to $2^{2^{s}}$ in [Valiant, 1975].
- It cannot be further reduced because a matching lower bound

Dpda's vs finite automata (general case)

- Each dpda of size s accepting a regular language can be simulated by a dfa with $2^{2^{2^{s}}}$ states. [Stearns, 1967]
- This upper bound was reduced to $2^{2^{s}}$ in [Valiant, 1975].
- It cannot be further reduced because a matching lower bound [Meyer and Fischer, 1971].
- However, in the unary case, it can be reduced to 2^{s}
(tight bound).

Dpda's vs finite automata (general case)

- Each dpda of size s accepting a regular language can be simulated by a dfa with $2^{2^{2^{5}}}$ states. [Stearns, 1967]
- This upper bound was reduced to $2^{2^{s}}$ in [Valiant, 1975].
- It cannot be further reduced because a matching lower bound [Meyer and Fischer, 1971].
- However, in the unary case, it can be reduced to 2^{s} [this work] (tight bound).

Size

- Size of a finite automaton:

Number of its states

- Size of a pushdown automaton:

Total number of symbols needed to write down its description.

- Size of a finite automaton:

Number of its states

- Size of a pushdown automaton:

Total number of symbols needed to write down its description.

```
We have to keep into account:
    - the number of the states
    - the cardinality of the pushdown alphabet
    - the length of the strings that can be pushed in one move on
    the stack
    - the number of transitions
```

- Size of a finite automaton:

Number of its states

- Size of a pushdown automaton:

Total number of symbols needed to write down its description.
We have to keep into account:

- the number of the states
- the cardinality of the pushdown alphabet
- the length of the strings that can be pushed in one move on the stack
- the number of transitions

Size of dpda's

Normal form for pda's (some restrictions on the transitions)

- We can prove that each dpda of size s can be converted into an equivalent dpda in normal form such that the product of
- the number of states
- the cardinality of the pushdown alphabet
is $O(s)$.

Size of dpda's

Normal form for pda's (some restrictions on the transitions)

- We can prove that each dpda of size s can be converted into an equivalent dpda in normal form such that the product of
- the number of states
- the cardinality of the pushdown alphabet is $O(s)$.

Hence, we can restrict our attention to:

- dpda's in normal form with
- size $=\#$ states $\times \#$ pushdow n alphabet

Size of dpda's

Normal form for pda's (some restrictions on the transitions)

- We can prove that each dpda of size s can be converted into an equivalent dpda in normal form such that the product of
- the number of states
- the cardinality of the pushdown alphabet is $O(s)$.

Hence, we can restrict our attention to:

- dpda's in normal form with
- size $=\#$ states $\times \#$ pushdown alphabet

Unary dfa's

Input alphabet $\Sigma=\{a\}$

Theorem
$L \subseteq\{a\}^{*}$ is regular iff

Unary dfa's

Input alphabet $\Sigma=\{a\}$

Theorem

$L \subseteq\{a\}^{*}$ is regular iff

Unary dfa's

Input alphabet $\Sigma=\{a\}$

Theorem

$L \subseteq\{a\}^{*}$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

Unary dfa's

Input alphabet $\Sigma=\{a\}$

Theorem

$L \subseteq\{a\}^{*}$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

Unary dfa's

Input alphabet $\Sigma=\{a\}$

Theorem

$L \subseteq\{a\}^{*}$ is regular iff $\exists \mu \geq 0, \lambda \geq 1$ s.t.

$$
\forall n \geq \mu: a^{n} \in L \text { iff } a^{n+\lambda} \in L
$$

Unary automata

The costs of the optimal simulations between automata are different in the unary and in the general case!

Costs in the unary case:

Unary automata

The costs of the optimal simulations between automata are different in the unary and in the general case!

Costs in the unary case:
[Chrobak 1986, Mereghetti and Pighizzini 2001]

Pushdown automata

Pushdown automata

Pushdown automata

- M is deterministic iff $\forall q \in Q, Z \in \Gamma$:
- if $\delta(q, \epsilon, Z) \neq \emptyset$ then $\delta(q, a, Z)=\emptyset$, for each $\boldsymbol{a} \in \Sigma$
- $\# \delta(q, \sigma, Z) \leq 1$, for each $\sigma \in \Sigma \cup\{\epsilon\}$.
- Deterministic cfl's: acceptance by final states

Pushdown automata

- M is deterministic iff $\forall q \in Q, Z \in \Gamma$:
- if $\delta(q, \epsilon, Z) \neq \emptyset$ then $\delta(q, a, Z)=\emptyset$, for each $\boldsymbol{a} \in \Sigma$
- \# $\quad(q, \sigma, Z) \leq 1$, for each $\sigma \in \Sigma \cup\{\epsilon\}$.
- Deterministic cfl's: acceptance by final states

$$
L(M)=\left\{x \in \Sigma^{*} \mid\left(q_{0}, x, Z_{0}\right) \vdash^{\star}(q, \epsilon, \gamma), q \in F, \gamma \in \Gamma^{*}\right\}
$$

Pushdown automata

Unary deterministic pda's:
For each integer $t \geq 0$:

Pushdown automata

- ($q, x, Z \alpha)$ configuration
- [qZ] mode

Unary deterministic pda's:
For each integer $t \geq 0$:

- if the computation does not stop before t steps then the configuration reach at the step t does not depend on the input length

Modes

$[q A] \leq[p B]$ iff all the following conditions hold:

Modes

$[q A] \leq[p B]$ iff all the following conditions hold:

(1) A configuration \mathcal{C} with mode $[q A]$ is reachable from the initial configuration

Modes

$[q A] \leq[p B]$ iff all the following conditions hold:

(1) A configuration \mathcal{C} with mode $[q A]$ is reachable from the initial configuration
(2) A configuration with mode $[p B]$ is reachable from the configuration with mode $[q A]$ and pushdown store containing only A
(3) If a configuration \mathcal{C}^{\prime} with mode $[p B]$ is reachable before \mathcal{C}, then

Modes

$[q A] \leq[p B]$ iff all the following conditions hold:

(1) A configuration \mathcal{C} with mode $[q A]$ is reachable from the initial configuration
(2) A configuration with mode $[p B]$ is reachable from the configuration with mode $[q A]$ and pushdown store containing only A
(3) If a configuration C^{\prime} with mode $[\rho B]$ is reachable before C, then

Modes

$[q A] \leq[p B]$ iff all the following conditions hold:

(1) A configuration \mathcal{C} with mode $[q A]$ is reachable from the initial configuration
(2) A configuration with mode $[p B]$ is reachable from the configuration with mode $[q A]$ and pushdown store containing only A
(3) If a configuration \mathcal{C}^{\prime} with mode $[p B]$ is reachable before \mathcal{C}, then the stack height in some configuration between \mathcal{C}^{\prime} and

Modes

$[q A] \leq[p B]$ iff all the following conditions hold:

(1) A configuration \mathcal{C} with mode $[q A]$ is reachable from the initial configuration
(2) A configuration with mode $[p B]$ is reachable from the configuration with mode $[q A]$ and pushdown store containing only A
(3) If a configuration \mathcal{C}^{\prime} with mode $[p B]$ is reachable before \mathcal{C}, then the stack height in some configuration between \mathcal{C}^{\prime} and \mathcal{C} must be less than in \mathcal{C}^{\prime}.

Modes

Lemma
The relation \leq defines a partial order on the set of the modes.

h_{t} history at the time t

Stack content + state information

History h_{t} at the time t : sequence of modes $\left[q_{m} Z_{m}\right] \ldots\left[q_{1} Z_{1}\right]$ s.t.:

- $Z_{m} \ldots Z_{1}$ is the stack content after t computation steps
- for $i=1, \ldots, m,\left[q_{i} Z_{i}\right]$ is the mode of the last visited configuration with stack height i

Histories and modes

For each step $t \geq 0$ we consider:

- h_{t} history
- m_{t} mode (leftmost element of h_{t})

For the given dpda M we consider:

- $H=\left\{h_{t} \mid t \geq 0\right\}$, the set all reachable histories
- $\left(m_{t}\right)_{t>0}$, the sequence of reached modes

Histories and modes

For each step $t \geq 0$ we consider:

- h_{t} history
- m_{t} mode (leftmost element of h_{t})

For the given dpda M we consider:

- $H=\left\{h_{t} \mid t \geq 0\right\}$, the set all reachable histories
- $\left(m_{t}\right)_{t \geq 0}$, the sequence of reached modes

Two possibilities:
© Every history belonging to H does not contain a repeated mode
(2) At least one history belonging to H contains a repetition

Histories and modes

For each step $t \geq 0$ we consider:

- h_{t} history
- m_{t} mode (leftmost element of h_{t})

For the given dpda M we consider:

- $H=\left\{h_{t} \mid t \geq 0\right\}$, the set all reachable histories
- $\left(m_{t}\right)_{t \geq 0}$, the sequence of reached modes

Two possibilities:
(1) Every history belonging to H does not contain a repeated mode
(2) At least one history belonging to H contains a repetition

Histories

Case 1: Every history belonging to H does not contain a repeated mode

- H is finite
- The given dpda can be simulated by a deterministic automaton A whose set of states is H
- The number of the states of A is bounded by the number of histories without repetitions
- If an history $\left[q_{m} Z_{m}\right] \ldots\left[q_{1} Z_{1}\right]$ does not contain any repetition, then $\left[q_{1} Z_{1}\right] \leq\left[q_{2} Z_{2}\right] \leq \ldots \leq\left[q_{m} Z_{m}\right]$
- Hence:
the number of states of the deterministic automaton A is bounded by 2 \#Q.\#Г

Histories

Case 1: Every history belonging to H does not contain a repeated mode

- H is finite
- The given dpda can be simulated by a deterministic automaton A whose set of states is H
- The number of the states of A is bounded by the number of histories without repetitions
- If an history $\left[q_{m} Z_{m}\right] \ldots\left[q_{1} Z_{1}\right]$ does not contain any
repetition, then $\left[q_{1} Z_{1}\right] \leq\left[q_{2} Z_{2}\right] \leq \ldots \leq\left[q_{m} Z_{m}\right]$
- Hence:
the number of states of the deterministic automaton A is bounded by $2^{\# Q \cdot \# \Gamma}$

Case 1: Every history belonging to H does not contain a repeated mode

- H is finite
- The given dpda can be simulated by a deterministic automaton A whose set of states is H
- The number of the states of A is bounded by the number of histories without repetitions
- If an history $\left[q_{m} Z_{m}\right] \ldots\left[q_{1} z_{1}\right]$ does not contain any repetition, then $\left[q_{1} Z_{1}\right] \leq\left[q_{2} Z_{2}\right] \leq \ldots \leq\left[q_{m} Z_{m}\right]$
- Hence:
the number of states of the deterministic automaton A

Case 1: Every history belonging to H does not contain a repeated mode

- H is finite
- The given dpda can be simulated by a deterministic automaton A whose set of states is H
- The number of the states of A is bounded by the number of histories without repetitions
- If an history $\left[q_{m} Z_{m}\right] \ldots\left[q_{1} Z_{1}\right]$ does not contain any repetition, then $\left[q_{1} Z_{1}\right] \leq\left[q_{2} Z_{2}\right] \leq \ldots \leq\left[q_{m} Z_{m}\right]$
- Hence:
the number of states of the deterministic automaton A

Case 1: Every history belonging to H does not contain a repeated mode

- H is finite
- The given dpda can be simulated by a deterministic automaton A whose set of states is H
- The number of the states of A is bounded by the number of histories without repetitions
- If an history $\left[q_{m} Z_{m}\right] \ldots\left[q_{1} Z_{1}\right]$ does not contain any repetition, then $\left[q_{1} Z_{1}\right] \leq\left[q_{2} Z_{2}\right] \leq \ldots \leq\left[q_{m} Z_{m}\right]$
- Hence:
the number of states of the deterministic automaton A

Case 1: Every history belonging to H does not contain a repeated mode

- H is finite
- The given dpda can be simulated by a deterministic automaton A whose set of states is H
- The number of the states of A is bounded by the number of histories without repetitions
- If an history $\left[q_{m} Z_{m}\right] \ldots\left[q_{1} Z_{1}\right]$ does not contain any repetition, then $\left[q_{1} Z_{1}\right] \leq\left[q_{2} Z_{2}\right] \leq \ldots \leq\left[q_{m} Z_{m}\right]$
- Hence:
the number of states of the deterministic automaton A is bounded by $2^{\# Q . \# \Gamma}$

Histories

Case 2: At least one history in H contains a repetition

- The histories in H grow in a periodic way, i.e.:
- The sequence $\left(m_{t}\right)_{t \geq 0}$ is ultimately periodic (period λ, from $t \geq \mu$)
- The language can be accepted by a deterministic automaton A with at most $\lambda+\mu$ states
- $\lambda+\mu \leq 2^{\# Q \cdot \# \Gamma}$
- Hence:
the given dpda can be simulated by a deterministic automaton A with at most $2^{\# Q \cdot \# \Gamma}$ states

Histories

Case 2: At least one history in H contains a repetition

- The histories in H grow in a periodic way, i.e.:
- The sequence $\left(m_{t}\right)_{t \geq 0}$ is ultimately periodic (period λ, from $t \geq \mu$)
- The language can be accepted by a deterministic automaton A with at most $\lambda+\mu$ states
- $\lambda+\mu<2$ \#Q.\#Г
- Hence:

Case 2: At least one history in H contains a repetition

- The histories in H grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_{0}, \tilde{h}_{1}, \ldots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step t is:

$$
h_{t}=\tilde{h}_{t \operatorname{MOD} \lambda}\left(\tilde{h}_{\lambda}\right)^{\left\lfloor\frac{t-\mu}{\lambda}\right\rfloor} h_{\mu}
$$

- The sequence $\left(m_{t}\right)_{t \geq 0}$ is ultimately periodic (period λ, from $t \geq \mu$)
- The language can be accepted by a deterministic automaton A with at most $\lambda+\mu$ states
- Hence:

Case 2: At least one history in H contains a repetition

- The histories in H grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_{0}, \tilde{h}_{1}, \ldots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step t is:

$$
h_{t}=\tilde{h}_{t \mathrm{MOD} \lambda}\left(\tilde{h}_{\lambda}\right)^{\left\lfloor\frac{t-\mu}{\lambda}\right\rfloor} h_{\mu}
$$

- The sequence $\left(m_{t}\right)_{t \geq 0}$ is ultimately periodic (period λ, from $t \geq \mu$)
- The language can be accepted by a deterministic automaton A with at most $\lambda+\mu$ states
- Hence:

Case 2: At least one history in H contains a repetition

- The histories in H grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_{0}, \tilde{h}_{1}, \ldots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step t is:

$$
h_{t}=\tilde{h}_{t \mathrm{MOD} \lambda}\left(\tilde{h}_{\lambda}\right)^{\left\lfloor\frac{t-\mu}{\lambda}\right\rfloor} h_{\mu}
$$

- The sequence $\left(m_{t}\right)_{t \geq 0}$ is ultimately periodic (period λ, from $t \geq \mu$)
- The language can be accepted by a deterministic automaton A with at most $\lambda+\mu$ states
- Hence:
the given dpda can be simulated by a deterministic

Case 2: At least one history in H contains a repetition

- The histories in H grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_{0}, \tilde{h}_{1}, \ldots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step t is:

$$
h_{t}=\tilde{h}_{t \mathrm{MOD} \lambda}\left(\tilde{h}_{\lambda}\right)^{\left\lfloor\frac{t-\mu}{\lambda}\right\rfloor} h_{\mu}
$$

- The sequence $\left(m_{t}\right)_{t \geq 0}$ is ultimately periodic (period λ, from $t \geq \mu$)
- The language can be accepted by a deterministic automaton A with at most $\lambda+\mu$ states
- $\lambda+\mu \leq 2^{\# Q \cdot \# \Gamma}$
- Hence:

Case 2: At least one history in H contains a repetition

- The histories in H grow in a periodic way, i.e.: $\exists \mu \geq 0, \lambda \geq 1, \exists$ sequences of modes $\tilde{h}_{0}, \tilde{h}_{1}, \ldots, \tilde{h}_{\lambda}$ s.t. for $t \geq \mu$, the history at the step t is:

$$
h_{t}=\tilde{h}_{t \mathrm{MOD} \lambda}\left(\tilde{h}_{\lambda}\right)^{\left\lfloor\frac{t-\mu}{\lambda}\right\rfloor} h_{\mu}
$$

- The sequence $\left(m_{t}\right)_{t \geq 0}$ is ultimately periodic (period λ, from $t \geq \mu$)
- The language can be accepted by a deterministic automaton A with at most $\lambda+\mu$ states
- $\lambda+\mu \leq 2^{\# Q \cdot \# \Gamma}$
- Hence:
the given dpda can be simulated by a deterministic automaton A with at most $2^{\# Q \cdot \# \Gamma}$ states

Unary dpda's vs dfa's

As a consequence:

Theorem

Each unary dpda of size s can be simulated by a dfa with $2^{O(s)}$ states.

What about the optimality of this simulation?

Unary dpda's vs dfa's

As a consequence:

Theorem

Each unary dpda of size s can be simulated by a dfa with $2^{O(s)}$ states.

What about the optimality of this simulation?

Unary dpda's vs dfa's: lower bound

Given $s>0$ consider $L_{s}=\left(a^{2^{s}}\right)^{*}$.
We can prove that:

- There exists a dpda of size $8 s+4$ accepting L_{s}.
- Each dfa accepting L_{s} must have at least 2^{s} states.

Hence our simulation is optimal!

Unary dpda's vs dfa's: lower bound

Given $s>0$ consider $L_{s}=\left(a^{2^{s}}\right)^{*}$.
We can prove that:

- There exists a dpda of size $8 s+4$ accepting L_{s}.
- Each dfa accepting L_{s} must have at least 2^{s} states.

Hence our simulation is optimal!

Unary dpda's vs dfa's: lower bound

Given $s>0$ consider $L_{s}=\left(a^{2^{s}}\right)^{*}$.
We can prove that:

- There exists a dpda of size $8 s+4$ accepting L_{s}.
- Each dfa accepting L_{s} must have at least 2^{s} states.

Hence our simulation is optimal!

Unary dpda's vs dfa's: lower bound

Given $s>0$ consider $L_{s}=\left(a^{2^{s}}\right)^{*}$.
We can prove that:

- There exists a dpda of size $8 s+4$ accepting L_{s}.
- Each dfa accepting L_{s} must have at least 2^{s} states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation

Unary dpda's vs dfa's: lower bound

Given $s>0$ consider $L_{s}=\left(a^{2^{s}}\right)^{*}$.
We can prove that:

- There exists a dpda of size $8 s+4$ accepting L_{s}.
- Each dfa accepting L_{s} must have at least 2^{s} states.

Hence our simulation is optimal!

Problem: Does it is possible to reduce the cost of the simulation of unary dpda's, by using nondeterministic or two-way finite automata?

Unary dpda's vs 2nfa's

- We consider again $L_{s}=\left(a^{2^{s}}\right)^{*}, s>0$
- L_{s} is accepted by a dpda of size $8 s+4$
- Furthermore, even each two-way nondeterministic automaton accepting L_{s} needs 2^{s} states
[Mereghetti, Pighizzini, 2000]

Unary dpda's vs 2nfa's

- We consider again $L_{s}=\left(a^{2^{s}}\right)^{*}, s>0$
- L_{s} is accepted by a dpda of size $8 s+4$
- Furthermore, even each two-way nondeterministic automaton accepting L_{s} needs 2^{s} states

Unary dpda's vs 2nfa's

- We consider again $L_{s}=\left(a^{2^{s}}\right)^{*}, s>0$
- L_{s} is accepted by a dpda of size $8 s+4$
- Furthermore, even each two-way nondeterministic automaton accepting L_{s} needs 2^{s} states

Unary dpda's vs 2nfa's

- We consider again $L_{s}=\left(a^{2^{s}}\right)^{*}, s>0$
- L_{s} is accepted by a dpda of size $8 s+4$
- Furthermore, even each two-way nondeterministic automaton accepting L_{s} needs 2^{S} states [Mereghetti, Pighizzini, 2000]

Hence:

Even the cost of the optimal simulation of unary doda's bv 2nfa's is exponential!

Unary dpda's vs 2nfa's

- We consider again $L_{s}=\left(a^{2^{s}}\right)^{*}, s>0$
- L_{s} is accepted by a dpda of size $8 s+4$
- Furthermore, even each two-way nondeterministic automaton accepting L_{s} needs 2^{s} states [Mereghetti, Pighizzini, 2000]

Hence:
Even the cost of the optimal simulation of unary dpda's by 2 nfa's is exponential!

Languages with "complex" dpda's

Unary dpda's can be exponentially more succinct than dfa's.
Does this is true for each unary regular language?

Problem

For $m \geq 0$, let $L_{m} \subseteq a^{*}$ be a language accepted by a dfa with 2^{m} states.
Does there exists an equivalent dpda with $O(m)$ states?

The answer to this question is negative:

Languages with "complex" dpda's

Unary dpda's can be exponentially more succinct than dfa's. Does this is true for each unary regular language?

Problem

For $m \geq 0$, let $L_{m} \subseteq a^{*}$ be a language accepted by a dfa with 2^{m} states.
Does there exists an equivalent dpda with $O(m)$ states?

The answer to this question is negative:
For each $m>0$ there exists a language $L_{m} \subseteq a^{*}$ s.t.:

- L_{m} is accepted by a dfa with 2^{m} states.
- The size of any dpda accepting L_{m} is at least $d \frac{2^{m}}{m^{2}}$, for a constant d.

Languages with "complex" dpda's

Unary dpda's can be exponentially more succinct than dfa's. Does this is true for each unary regular language?

Problem

For $m \geq 0$, let $L_{m} \subseteq a^{*}$ be a language accepted by a dfa with 2^{m} states.
Does there exists an equivalent dpda with $O(m)$ states?

The answer to this question is negative:
For each $m>0$ there exists a language $L_{m} \subseteq a^{*}$ s.t.:

- L_{m} is accepted by a dfa with 2^{m} states.
- The size of any dpda accepting L_{m} is at least $d \frac{2^{m}}{m^{2}}$, for a constant d.

Languages with "complex" dpda's

w_{m} de Bruijn word of order m on $\{0,1\}$:

- $\left|w_{m}\right|=2^{m}+m-1$
- each string of length m is a factor of w_{m}, occurring in w_{m} exactly one time
- the suffix and the prefix of length $m-1$ of w_{m} coincide.

Example: $w_{3}=0001011100$
$L_{m}=\left\{a^{k} \mid\right.$ the letter of w_{m} in position $k \operatorname{MOD}^{\prime} 2^{m}$ is 1$\}$,
where x MOD $^{\prime} y=x$ MOD y, if x MOD $y>0, y$ otherwise
Example: $L_{3}=\left\{a^{0}, a^{4}, a^{6}, a^{7}\right\}\left\{a^{8}\right\}$

Languages with "complex" dpda's

w_{m} de Bruijn word of order m on $\{0,1\}$:

- $\left|w_{m}\right|=2^{m}+m-1$
- each string of length m is a factor of w_{m}, occurring in w_{m} exactly one time
- the suffix and the prefix of length $m-1$ of w_{m} coincide.

Example: $w_{3}=0001011100$
$L_{m}=\left\{a^{k} \mid\right.$ the letter of w_{m} in position $k \mathrm{MOD}^{\prime} 2^{m}$ is 1$\}$, where $x \operatorname{MOD}^{\prime} y=x$ MOD y, if x MOD $y>0, y$ otherwise

Example: $L_{3}=\left\{a^{0}, a^{4}, a^{6}, a^{7}\right\}\left\{a^{8}\right\}^{*}$.

L_{m} is accepted by a dfa with 2^{m} states

Languages with "complex" dpda's

- M: a dpda of size s accepting L_{m}
- $M^{\prime}: M$ extended with an output tape to generate the de Bruijn word
- A: a dfa with $m+1$ states, input alphabet $\{0,1\}$, ending and accepting when the last m input symbols coincide with the suffix of length m of w_{m}
- $M^{\prime \prime}$: a dpda of size $O(m s)$, composition of M^{\prime} and A, accepting $\left\{a^{2^{m}+m-1}\right\}$
- G: cfg grammar of size $O(m s)$, obtained from $M^{\prime \prime}$, generating $\left\{w_{m}\right\}$

Languages with "complex" dpda's

- M : a dpda of size s accepting L_{m}
- $M^{\prime}: M$ extended with an output tape to generate the de Bruijn word
- A: a dfa with $m+1$ states, input alphabet $\{0,1\}$, ending and accepting when the last m input symbols coincide with the suffix of length m of w_{m}
- $M^{\prime \prime}$: a dpda of size $O(m s)$, composition of M^{\prime} and A, accepting $\left\{a^{2}\right.$
- G: cfg grammar of size $O(\mathrm{~ms})$, obtained from $M^{\prime \prime}$ generating $\left\{w_{m}\right\}$

Languages with "complex" dpda's

- M : a dpda of size s accepting L_{m}
- M^{\prime} : M extended with an output tape to generate the de Bruijn word
- A: a dfa with $m+1$ states, input alphabet $\{0,1\}$, ending and accepting when the last m input symbols coincide with the suffix of length m of w_{m}
- $M^{\prime \prime}$: a dpda of size $O(m s)$, composition of M^{\prime} and A,
accepting $\left\{a^{2^{m}+m-1}\right\}$
- G: cfg grammar of size $O(\mathrm{~ms})$, obtained from $M^{\prime \prime}$ generating $\left\{w_{m}\right\}$

Languages with "complex" dpda's

- M : a dpda of size s accepting L_{m}
- M^{\prime} : M extended with an output tape to generate the de Bruijn word
- A: a dfa with $m+1$ states, input alphabet $\{0,1\}$, ending and accepting when the last m input symbols coincide with the suffix of length m of w_{m}
- $M^{\prime \prime}$: a dpda of size $O(m s)$, composition of M^{\prime} and A, accepting $\left\{a^{2^{m}+m-1}\right\}$
- G: cfg grammar of size $O(m s)$, obtained from $M^{\prime \prime}$, generating $\left\{w_{m}\right\}$

Languages with "complex" dpda's

- M: a dpda of size s accepting L_{m}
- M^{\prime} : M extended with an output tape to generate the de Bruijn word
- A: a dfa with $m+1$ states, input alphabet $\{0,1\}$, ending and accepting when the last m input symbols coincide with the suffix of length m of w_{m}
- $M^{\prime \prime}$: a dpda of size $O(m s)$, composition of M^{\prime} and A, accepting $\left\{a^{2^{m}+m-1}\right\}$
- G: cfg grammar of size $O(m s)$, obtained from $M^{\prime \prime}$, generating $\left\{w_{m}\right\}$

[^0]
Languages with "complex" dpda's

- M: a dpda of size s accepting L_{m}
- $M^{\prime}: M$ extended with an output tape to generate the de Bruijn word
- A: a dfa with $m+1$ states, input alphabet $\{0,1\}$, ending and accepting when the last m input symbols coincide with the suffix of length m of w_{m}
- $M^{\prime \prime}$: a dpda of size $O(m s)$, composition of M^{\prime} and A, accepting $\left\{a^{2^{m}+m-1}\right\}$
- G: cfg grammar of size $O(m s)$, obtained from $M^{\prime \prime}$, generating $\left\{w_{m}\right\}$

Lemma ([Domaratzki, Pighizzini, Shallit, 2002])

The size of each grammar G generating $\left\{w_{m}\right\}$ must be at least $c \frac{2^{m}}{m}$, for some constant c.

Languages with "complex" dpda's

- M : a dpda of size s accepting L_{m}
- $M^{\prime}: M$ extended with an output tape to generate the de Bruijn word
- A: a dfa with $m+1$ states, input alphabet $\{0,1\}$, ending and accepting when the last m input symbols coincide with the suffix of length m of w_{m}
- $M^{\prime \prime}$: a dpda of size $O(m s)$, composition of M^{\prime} and A, accepting $\left\{a^{2^{m}+m-1}\right\}$
- G: cfg grammar of size $O(m s)$, obtained from $M^{\prime \prime}$, generating $\left\{w_{m}\right\}$

Lemma ([Domaratzki, Pighizzini, Shallit, 2002])

The size of each grammar G generating $\left\{w_{m}\right\}$ must be at least $c \frac{2^{m}}{m}$, for some constant c.
Hence $s \geq d \frac{2^{m}}{m^{2}}$, for some $d>0$.

Simulation of unary dfa's by dpda's

As a consequence we get the following lower bound:

Corollary

There exists a constant $K>0$ such that the conversion of unary n-state dfa's into equivalent dpda's produces dpda's of size at least $K \frac{n}{\log ^{2} n}$, for infinitely many n 's.

Pda's vs cfg's

To prove the last result we have investigated the transformation of unary dpda's into context-free grammars.

- Each pda can be transformed into an equivalent cfg with $(\# Q)^{2} \cdot \# \Gamma+1$ variables.

Pda's vs cfg's

To prove the last result we have investigated the transformation of unary dpda's into context-free grammars.

- Each pda can be transformed into an equivalent cfg with $(\# Q)^{2} \cdot \# \Gamma+1$ variables.
- This number cannot be reduced, even if the given pda is deterministic

Pda's vs cfg's

To prove the last result we have investigated the transformation of unary dpda's into context-free grammars.

- Each pda can be transformed into an equivalent cfg with $(\# Q)^{2} \cdot \# \Gamma+1$ variables.
- This number cannot be reduced, even if the given pda is deterministic [Goldstine, Price, Wotschke, 1982].

However, we proved that:

> Theorem
> Each unary dpda can be transformed into an equivalent cfg grammar with $\# Q \cdot \# \Gamma$ variables.

Pda's vs cfg's

To prove the last result we have investigated the transformation of unary dpda's into context-free grammars.

- Each pda can be transformed into an equivalent cfg with $(\# Q)^{2} \cdot \# \Gamma+1$ variables.
- This number cannot be reduced, even if the given pda is deterministic [Goldstine, Price, Wotschke, 1982].

However, we proved that:

Theorem

Each unary dpda can be transformed into an equivalent cfg grammar with \#Q $\#$. variables.

Related questions and results

Bounded languages:
Subsets of $w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*}$, for given words w_{1}, \ldots, w_{n}.
Extend the investigation to bounded deterministic context-free
languages:

Related questions and results

Bounded languages:

Subsets of $w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*}$, for given words w_{1}, \ldots, w_{n}.
Extend the investigation to bounded deterministic context-free languages:

- Simulation of dpda's accepting bounded regular languages, by finite automata.

Related questions and results

Bounded languages:
Subsets of $w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*}$, for given words w_{1}, \ldots, w_{n}.
Extend the investigation to bounded deterministic context-free languages:

- Simulation of dpda's accepting bounded regular languages, by finite automata.
- Simulation of dpda's accepting bounded (context-free) languages, by finite-turn pushdown automata.

Related questions and results

Bounded languages:
Subsets of $w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*}$, for given words w_{1}, \ldots, w_{n}.
Extend the investigation to bounded deterministic context-free languages:

- Simulation of dpda's accepting bounded regular languages, by finite automata.
- Simulation of dpda's accepting bounded (context-free) languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Theorem
 Each bounded context-free language generated by a cfg with h
 variables in Chomsky normal form is accepted by a finite-turn pda with 2^{h} and $O(1)$ stack symbols.

Related questions and results

Bounded languages:

Subsets of $w_{1}^{*} w_{2}^{*} \ldots w_{n}^{*}$, for given words w_{1}, \ldots, w_{n}.
Extend the investigation to bounded deterministic context-free languages:

- Simulation of dpda's accepting bounded regular languages, by finite automata.
- Simulation of dpda's accepting bounded (context-free) languages, by finite-turn pushdown automata.

In the nondeterministic case we have the following:

Theorem ([Malcher, Pighizzini, 2007])

Each bounded context-free language generated by a cfg with h variables in Chomsky normal form is accepted by a finite-turn pda with 2^{h} and $O(1)$ stack symbols.

[^0]: Lemma
 The size of each grammar G generating $\left\{w_{m}\right\}$ must be at least

