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The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2Pushdown Automata

type 3“Hennie Machines”



Part II: One-Tape TMs with Rewriting Restrictions

Outline

I Limited automata

I Equivalence with CFLs

I Determinism vs nondeterminism
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I 1-limited automata and regular languages

I Related models



Limited Automata [Hibbard ’67]

One-tape Turing machines with restricted rewritings

Definition
Fixed an integer d ≥ 1, a d-limited automaton is
I a one-tape Turing machine
I which is allowed to rewrite the content of each tape cell

only in the first d visits

Computational power

I For each d ≥ 2, d-limited automata characterize
context-free languages [Hibbard ’67]

I 1-limited automata characterize regular languages
[Wagner&Wechsung ’86]



Example: Balanced Parentheses
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6−→ ←−yes!

(i) Move to the right to search a closed parenthesis
(ii) Rewrite it by x
(iii) Move to the left to search an open parenthesis
(iv) Rewrite it by x
(v) Repeat from the beginning

Special cases:
(i’) If in (i) the right end of the tape is reached then

scan all the tape and accept iff all tape cells contain x
(iii’) If in (iii) the left end of the tape is reached then reject

Each cell is rewritten only in the first 2 visits!



The Chomsky Hierarchy

type 0(One-tape) Turing Machines

type 1Linear Bounded Automata

type 2d-Limited Automata (d ≥ 2)

type 31-Limited Automata



Why Each CFL is Accepted by a 2-LA [P.&Pisoni ’14]

Main tool:

Theorem ([Chomsky&Schützenberger ’63])
Every context-free language L ⊆ Σ∗ can be expressed as

L = h(Dk ∩ R)

where, for Ωk = {(1, )1, (2, )2, . . . , (k , )k}:
I Dk ⊆ Ω∗k is a Dyck language
I R ⊆ Ω∗k is a regular language
I h : Ωk → Σ∗ is an homomorphism

Furthermore, it is possible to restrict to non-erasing
homomorphisms [Okhotin ’12]



Why Each CFL is Accepted by a 2-LA
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L context-free language, with L = h(Dk ∩ R)

I T nondeterministic transducer computing h−1

I AD 2-LA accepting the Dyck language Dk

I AR finite automaton accepting R



Why Each CFL is Accepted by a 2-LA
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︸ ︷︷ ︸
input of T

z = σ1σ2 · · ·σk ∈ h−1(w)

####σ1 ##σ2 · · · ###σk

u1 u2 · · · uk

h(σi ) = ui

Non erasing homomorphism!︸ ︷︷ ︸
(padded) input of AD and AR

Not stored into the tape! Each σi is produced “on the fly”



Why Each CFL is Accepted by a 2-LA
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w = · · · ui · · ·
6

ui· · · · · ·· · · · · · · · ·

⇓
####σi

⇓
h(σi ) = ui

⇓
####γi

⇓
γi : first rewriting by AD

I On the tape, ui is replaced directly by ####γi
I One move of AR on input σi is also simulated



Why Each CFL is Accepted by a 2-LA
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The resulting machine is a 2-LA recognizing the given CFL

Problems:
I What about the size of the resulting machine?
I What about the case of deterministic CFLs?



PDAs vs Limited Automata



Simulation of Pushdown Automata by 2-Limited Automata
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Normal form for (D)PDAs:
I at each step, the stack height increases at most by 1
I ε-moves cannot push on the stack

Each PDA can be simulated by an equivalent 2-LA
I Polynomial size
I Determinism is preserved



Simulation of 2-Limited Automata by Pushdown Automata

Problem
What about the converse simulation,
namely that of 2-LAs by PDAs? [Hibbard ’67]

Original simulation

[P.&Pisoni ’15]
Reformulation
I Exponential cost
I Determinism is preserved (extra costs)



Transition Tables of 2-LAs

I Fixed a 2-limited automaton
I Transition table τw w is a “frozen” string

τw ⊆ Q × {−1,+1} × Q × {−1,+1}

p
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q

p

w

(q,−1, p,−1) ∈ τw (q,+1, p,−1) ∈ τw

j−→
j

←− j←−j
←−

(q, d ′, p, d ′′) ∈ τw iff M on a tape segment containing w has
a computation path:

entering the segment in q from d ′

exiting the segment in p to d ′′

left = −1, right = +1



Simulation of 2-LAs by PDAs

Initial configuration
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Simulation of 2-LAs by PDAs
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Simulation of 2-LAs by PDAs
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Simulation of 2-LAs by PDAs
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Simulation of 2-LAs by PDAs
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Simulation of 2-LAs by PDAs
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Simulation of 2-LAs by PDAs
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Simulation of 2-LAs by PDAs
Summing up...

Given a 2-LA M with:
I n states At most 24n

2
many different tables!

I m symbol working alphabet

Resulting PDA:
I States

Normal mode: states of M
Back mode: (q, τ)
q state of M, τ transition table

States
2n(24n

2
+ 1) + 1

I Pushdown symbols
Tape symbols of M
Transition tables

Pushdown symbols

m + 24n
2

I Each move can increase the
stack height at most by 1 2-LAs → PDAs

Exponential cost



Optimality: the Witness Languages Kn

Given n ≥ 1:

a1 a2 . . . an . . . an+1 an+2 . . . a2n b1 b2 . . . bn︸ ︷︷ ︸
x1

︸ ︷︷ ︸
xk

︸ ︷︷ ︸
x

H
HH
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At least n of these blocks are equal
to the last block x

Kn = {x1x2 · · · xkx | k ≥ 0, x1, x2, . . . , xk , x ∈ {0, 1}n,
∃i1 < i2 < · · · < in ∈ {1, . . . , k},
xi1 = xi2 = · · · = xin = x }

Example (n = 3): 0 0 1|1 1 0|0 1 1|1 1 0|1 1 0|1 1 1|1 1 0



How to Recognize Kn

0 0 1
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|

1 1 0 (n = 3)

1. Scan all the tape from left to right
2. Start to move to the left and mark the rightmost n symbols
3. Compare each block of length n (from the right),

symbol by symbol, with the last block
4. When the left end of the tape is reached accept if and only if

the number of block equal to the last one is ≥ n

Complexity:
I Kn is accepted by a deterministic 2-LA with O(n2) states

and a fixed working alphabet
I Each PDA accepting Kn has size at least exponential in n

(Proof based on the interchange lemma for CFLs)



Simulation of 2-LAs by PDAs

Cost of the simulation

I Exponential size for the simulation of 2-LAs by PDAs

I Optimal



Computational Power of Limited Automata

From the simulations:

I 2-Limited Automata ≡ CFLs

What about d-Limited Automata, with d > 2?
I They are still characterize CFLs [Hibbard ’67]
I They can be simulated by exponentially larger PDAs

[Kutrib&P.&Wendlandt subm.]

What about 1-Limited Automata?
I Regular languages [Wagner&Wechsung ’86]



Determinism vs Nondeterminism

I Determinism is preserved by the exponential simulation
of 2-limited automata by PDAs
provided that the input of the PDA is right end-marked

I Without end-marker: double exponential simulation

I Conjecture: this cost cannot be reduced

I The converse simulation also preserve determinsm

Deterministic 2-Limited Automata ≡ DCFLs
[P.&Pisoni ’15]



Determinism vs Nondeterminism

What about deterministic d-Limited Automata, d > 2?

I L = {anbnc | n ≥ 0} ∪ {anb2nd | n ≥ 0}
is accepted by a deterministic 3-LA, but is not a DCFL

I Infinite hierarchy [Hibbard ’67]
For each d ≥ 2 there is a language which is accepted by a
deterministic d-limited automaton and that cannot be
accepted by any deterministic (d − 1)-limited automaton



1-Limited Automata



Simulation of 1-Limited Automata by Finite Automata

Main idea: transformation of two-way NFAs into one-way DFAs
[Shepherdson ’59]

I First visit to a cell: direct simulation

I Further visits: transition tables

for x ∈ Σ∗, τx ⊆ Q × Q: (p, q) ∈ τx iff x
� p
-q

I Finite control of the DFA which simulates the two-way NFA:

x y

6
τx

transition table of the already scanned input prefix
set of possible current states



Simulation of 1-Limited Automata by Finite Automata

Simulation of 1-LAs: [Wagner&Wechsung ’86]

x yx w y

6
τw

I The transition table depends on the string used to rewrite the
input prefix x

I This string was nondeterministically chosen by the 1-LA

The simulating DFA keeps in its finite control a
sets of transition tables



1-Limited Automata → Finite Automata: Upper Bounds

Theorem
Let M be a 1-LA with n states.

I There exists an equivalent DFA with 2n·2
n2

states.
I There exists an equivalent NFA with n · 2n2

states.

If M is deterministic then there exists an equivalent DFA with no
more than n · (n + 1)n states.

DFA NFA

nondet. 1-LA 2n·2
n2

n · 2n2

det. 1-LA n · (n + 1)n n · (n + 1)n

These upper bounds do not depend on the alphabet size of M!
The gaps are optimal!



Optimality: the Witness Languages [P.&Pisoni ’14]

Fixed n ≥ 1:

. . . . . . . . . . . .a1 a2 an an+1 an+2 a2n a... a... akn︸ ︷︷ ︸
x1

︸ ︷︷ ︸
x2

︸ ︷︷ ︸
xk

XXXXXXX
A
A

�������
At least n of these blocks are equal

Ln = {x1x2 · · · xk | k ≥ 0, x1, x2, . . . , xk ∈ {0, 1}n,
∃i1 < i2 < · · · < in ∈ {1, . . . , k},
xi1 = xi2 = · · · = xin }

Example (n = 3): 0 0 1|1 1 0|0 1 1|1 1 0|1 1 0|1 1 1|0 1 1



How to Recognize Ln: 1-Limited Automata

0 0 1|1̂ 1 0|0 1 1|1̂ 1 0|1̂ 1 0|1 1 1|0 1 1 (n = 3)

−→ ←−

I Nondeterministic strategy:
Guess the leftmost positions of n input blocks
containing the same factor and Verify

I Implementation (3 tape scans):
1. Mark n tape cells
2. Count the tape modulo n to check whether or not:

I the input length is a multiple of n, and
I the marked cells correspond to the leftmost symbols of some

blocks of length n

3. Compare, symbol by symbol, each two consecutive blocks of
length n that start from the marked positions

I O(n) states



How to Recognize Ln: Deterministic Finite Automata

I Idea:
For each x ∈ {0, 1}n count how many blocks coincide with x
Accept if and only if one of the counters reaches the value n

I State upper bound:
Finite control:
a counter (up to n) for each possible block of length n
There are 2n possible different blocks of length n
Number of states double exponential in n
more precisely (2n − 1) · n2n

+ n

I State lower bound:
n2n

(standard distinguishability arguments)

The state gap between 1-LAs and DFAs is double exponential!



How to Recognize Ln: Nondeterministic Finite Automata

I Idea:

Guess x ∈ {0, 1}n
Verify whether or not n blocks in the input contains x

I State upper bound:
Finite control: a counter ≤ n for the occurrences of x ,
and a counter modulo n for input positions
Number of states: O(n2 · 2n)

I State lower bound:
n2 · 2n (fooling set technique)



Nondetermism vs. Determinism in 1-LAs

1-LA DFA-exp expLn: O(n)
states

Ln: ≥ n2n

states

det-1-LA
��

�
��

��*

exp
?

exp

Ln: ≥ exp(n)
states

Corollary

Removing nondeterminism from 1-LAs requires exponentially many
states

Cfr. Sakoda and Sipser question [Sakoda&Sipser ’78]:

How much it costs in states to remove nondeterminism
from two-way finite automata?



Strongly Limited Automata



Different Restrictions

I Dyck languages are accepted without fully using capabilities
of 2-limited automata

I Chomsky-Schützenberger Theorem: Recognition of CFLs can
be reduced to recognition of Dyck languages

Question

Is it possible to restrict 2-limited automata
without affecting their computational power?

YES!

Forgetting Automata
[Jancar&Mráz&Plátek ’96]
I The content of any cell can be erased

in the 1st or 2nd visit (using a fixed symbol)
I No other changes of the tape are allowed



Strongly Limited Automata [P.’15]

I Model inspired by the algorithm used by 2-limited automata
to recognize Dyck languages

I Restrictions on
state changes
head reversals
rewriting operations



Dyck Language Recognition
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6C−→ ←−yes!

I Moves to the right:
to search a closed bracket Only one state q0!

I Moves to the left:
to search an open bracket One state for each type of bracket!
to check the tape content in the final scan from right to left

I Rewritings:
each closed bracket is rewritten in the first visit
each open bracket is rewritten in the second visit
no rewritings in the final scan



Strongly Limited Automata

I Alphabet
Σ input
Γ working

I States and moves
q0 initial state, moving from left to right
99K move to the right

q
X←↩ write X ∈ Γ, enter state q ∈ QL, turn to the left

QL moving from right to left
L99 move to the left
X←− write X , do not change state, move to the left
X↪→q0 write X , enters state q0, turn to the right

QΥ final scan
when C is reached move from right to left and
test the membership of the tape content to a “local” language



Strongly Limited Automata: Palindromes

B a

Y

b

Y

b

Z

b

X

a

X

C
Σ = {a, b}, Γ = {X,Y,Z}
q0
QL = {qa, qb}

Transitions:
q0 99K move to the right

other possibility in cell not yet rewritten:

qσ
X←↩ write X ∈ Γ, enter state qσ ∈ QL, turn to the left

qσ moving from right to left

cells already rewritten: L99 move to the left

cells containing γ ∈ {a, b}, nondeterministically select between:
Z←− write Z, do not change state, move to the left
Y↪→q0write Y, enters state q0, turn to the right (only if γ = σ)



Strongly Limited Automata: Palindromes
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Z
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X
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X C
Σ = {a, b}, Γ = {X,Y,Z}
q0
QL = {qa, qb}

Final phase:
I The string between the end-markers should belong to

Y∗ZX∗ + Y∗X∗

with the exceptions of inputs of length ≤ 1

I The following two-letter factors are allowed:
BY YY YZ ZX YX XX XC
Ba Bb aC bC BC



Strongly Limited Automata

I Computational power: same as 2-limited automata (CFLs)

I Descriptional power: the sizes of equivalent
CFGs
PDAs
strongly limited automata

are polynomially related

2-limited automata can be exponentially smaller

I CFLs → strongly limited automata:
conversion from CFGs which heavily uses nondeterminism



Determinism vs Nondeterminism

What is the power of deterministic strongly limited automata?

I Each deterministic strongly limited automaton can be
simulated by a deterministic 2-LA

I Deterministic languages as
L1 = {canbn | n ≥ 0} ∪ {da2nbn | n ≥ 0}
L2 = {anb2n | n ≥ 0}

are not accepted by deterministic strongly limited automata

Proper subclass of deterministic context-free languages



Determinism vs Nondeterminism: a Small Change

I Moving to the right, a strongly limited automaton can use
only q0

I A possible modification:
a set of states QR used while moving to the right

the simulation by PDAs remains polynomial
L1 = {canbn | n ≥ 0} ∪ {da2nbn | n ≥ 0}
L2 = {anb2n | n ≥ 0}
are accepted by deterministic devices

Problem
What is the class of languages accepted
by the deterministic version of devices so obtained?



Final Remarks



Active Visits ad Return Complexity

Active visit of a tape cell: any visit changing the content

Return Complexity
Maximum number of visits to a tape cell counted
starting from the first active visit [Wechsung ’75]

ret-c(1): regular languages
ret-c(d), d ≥ 2: context-free languages
ret-c(2) deterministic: not comparable with DCFLs

Dual Return Complexity
Maximum number of visits to a tape cell
counted up to the last active visit dret-c(d) ≡ d-limited automata

ret-c(f (n))=dret-c(f (n)) =1AuxPDA(f (n))
[Wechsung&Brandstädt ’79]



Thank you for your attention!
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